Đáp án:
a) Thay m= √5 vào hệ phương trình ta được:
$\begin{array}{l}
\left\{ \begin{array}{l}
\sqrt 5 x + 2y = 1\\
x + \left( {\sqrt 5 - 1} \right)y = \sqrt 5
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
\sqrt 5 x + 2y = 1\\
\sqrt 5 x + \sqrt 5 \left( {\sqrt 5 - 1} \right)y = \sqrt 5 .\sqrt 5
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
\sqrt 5 x + 2y = 1\\
\sqrt 5 x + \left( {5 - \sqrt 5 } \right)y = 5
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x + \left( {\sqrt 5 - 1} \right)y = \sqrt 5 \\
\left( {5 - \sqrt 5 } \right)y - 2y = 5 - 1
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x = \sqrt 5 - \left( {\sqrt 5 - 1} \right)y\\
y = \frac{4}{{3 - \sqrt 5 }} = \frac{{4\left( {3 + \sqrt 5 } \right)}}{{9 - 5}} = 3 + \sqrt 5
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x = - 2 - \sqrt 5 \\
y = 3 + \sqrt 5
\end{array} \right.\\
b)\,x - y + 2 = 0\\
\Rightarrow y = x + 2\\
\Rightarrow \left\{ \begin{array}{l}
mx + 2y = 1\\
x + \left( {m - 1} \right)y = m
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
mx + 2\left( {x + 2} \right) = 1\\
x + \left( {m - 1} \right)\left( {x + 2} \right) = m
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
\left( {m + 2} \right)x = - 3\\
mx = m - 2\left( {m - 1} \right)
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
\left( {m + 2} \right)x = - 3\\
mx = 2 - m
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x = \frac{{ - 3}}{{m + 2}}\\
x = \frac{{2 - m}}{m}
\end{array} \right.\left( {m \ne 0;m \ne - 2} \right)\\
Hpt\,có\,nghiệm\,duy\,nhất\\
\Rightarrow \frac{{ - 3}}{{m + 2}} = \frac{{2 - m}}{m}\\
\Rightarrow - 3m = \left( {m + 2} \right)\left( {2 - m} \right)\\
\Rightarrow 3m = \left( {m + 2} \right)\left( {m - 2} \right)\\
\Rightarrow 3m = {m^2} - 4\\
\Rightarrow {m^2} - 3m - 4 = 0\\
\Rightarrow {m^2} - 4m + m - 4 = 0\\
\Rightarrow \left( {m - 4} \right)\left( {m + 1} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
m = 4\\
m = - 1
\end{array} \right.\left( {tmdk} \right)
\end{array}$
Vậy m=-1 hoặc m=4 thì thỏa mãn