Phương pháp giải: - Giải phương trình lượng giác cơ bản: \(\cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\). - Cho nghiệm tìm được thuộc \(\left[ { - 50\pi ;0} \right]\), tìm số các giá trị nguyên k thỏa mãn. Giải chi tiết:Ta có: \(\cot 20x = 1 \Leftrightarrow 20x = \dfrac{\pi }{4} + k\pi \) \( \Leftrightarrow x = \dfrac{\pi }{{80}} + \dfrac{{k\pi }}{{20}}\,\,\left( {k \in \mathbb{Z}} \right)\). Theo bài ra ta có: \(\begin{array}{l}x \in \left[ { - 50\pi ;0} \right]\\ \Leftrightarrow - 50\pi \le \dfrac{\pi }{{80}} + \dfrac{{k\pi }}{{20}} \le 0\\ \Leftrightarrow - 50 \le \dfrac{1}{{80}} + \dfrac{k}{{20}} \le 0\\ \Leftrightarrow - \dfrac{{4001}}{4} \le k \le - \dfrac{1}{4}\end{array}\) Mà \(k \in \mathbb{Z} \Rightarrow k \in \left\{ { - 1000; - 999;....; - 2; - 1} \right\}\) , suy ra có 1000 giá trị nguyên của k thỏa mãn. Vậy phương trình đã cho có 1000 nghiệm thỏa mãn yêu cầu bài toán. Chọn D.