Giải thích các bước giải:
a, G = 1-2+$2^{2}$-$2^{3}$+...+$2^{98}$-$2^{99}$
2G = 2-$2^{2}$+$2^{3}$-$2^{4}$+...+$2^{99}$-$2^{100}$
3G = (1-2+$2^{2}$-$2^{3}$+...+$2^{98}$-$2^{99}$)+(2-$2^{2}$+$2^{3}$-$2^{4}$+...+$2^{99}$-$2^{100}$)
3G = 1-$2^{100}$
G = $\frac{1-2^{100}}{3}$
b, M = $\frac{1}{2}$+$\frac{1}{2²}$+...+$\frac{1}{2¹⁰⁰}$
M = $\frac{2⁹⁹}{2¹⁰⁰}$+$\frac{2⁹⁸}{2¹⁰⁰}$+$\frac{1}{2¹⁰⁰}$
M = $\frac{2⁹⁹+2⁹⁸+...+1}{2¹⁰⁰}$