rut gon P
P=\(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1=\dfrac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-2\sqrt{a}-1+1=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)
Cho biểu thức \(P=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\) Tìm các giá trị x, y, nguyên để P có giá trị bằng 2
Giải phương trình vô tỉ
\(\sqrt{5x^2+4x}-\sqrt{x^2-3x-18}=5\sqrt{x}\)
A=\(\sqrt{5-2\sqrt{6}}\)
B=\(\sqrt{7+2\sqrt{10}}+\sqrt{7-2\sqrt{10}}\)
C= \(\sqrt{8+2\sqrt{15}}-\sqrt{5}\)
Bài 1 : Cho x, y > 0 thỏa mãn 2x+y>=7. Tìm GTNN của \(P=x^2-x+3y+\dfrac{9}{x}+\dfrac{1}{y}+9\)
Bài 2 : Cho x, y, z >0 thỏa mãn x+y+z=1. Tìm GTNN của \(P=\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\)
Chứng minh rằng với mọi số tự nhiên n ta có: \(5^{n+2}+26.5^n+8^{2n+1}⋮59\).
Bài 1 :
a) giải phương trình : \(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)
b) tìm GTLN, GTNN của biểu thức Q=\(\dfrac{-15}{3+\sqrt{6x-x^2-5}}\)
Bài 1: Tìm các giá trị x để \(\dfrac{4x+3}{x^2+1}\) là số nguyên âm
1. Tính giá trị các biểu thức
a) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
b) \(\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}-\dfrac{1}{\sqrt{5}+\sqrt{2}}+1\right)\cdot\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)
2. Cho biểu thức : C = \(\sqrt{4+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\) ( với x >= 4 )
a) rút gọn
b) tính giá trị của C khi x = \(\sqrt{15+\sqrt{6}}\)
Tìm ĐK và rút gọn
a,\(A=\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)
b, \(B=\left(\dfrac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}\right):\dfrac{1}{x^2-\sqrt{x}}\)
Giải PT: \(\dfrac{36}{\sqrt{x-2}}+\dfrac{4}{\sqrt{y-1}}=28-4\sqrt{x-2}-\sqrt{y-1}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến