Có $\dfrac{a}{b} < 1 \Rightarrow \dfrac{a}{b} < \dfrac{a + n}{b + n}$
$\Rightarrow A = \dfrac{10^{11} - 1}{10^{12} - 1} < \dfrac{10^{11} - 1 + 11}{10^{12} - 1 + 11} = \dfrac{10^{11} + 10}{10^{12} + 10} = \dfrac{10.\left ( 10^{10} + 1 \right )}{10.\left ( 10^{11} + 1 \right )} = \dfrac{10^{10} + 1}{10^{11} + 1} = B$
Vậy $A < B$