Đáp án:
$\\$
`a,`
`x/(3×13) + x/(13×23) + ... + x/(83 × 93)`
`= x × [1/(3×13) + 1/(13×23) + ... + 1/(83 × 93)]`
`= x × 1/10 × [1/3 - 1/13 + 1/13 - 1/23 + ... + 1/83 - 1/93]`
`= x/10 × [1/3 + (-1/13 + 1/13) + ... + (-1/83 + 1/83) - 1/93]`
`= x/10 × [1/3 - 1/93]`
`= x/10 × [31/93 - 1/93]`
`= x/10 × 10/31`
`= x/31`
$\\$
`b,`
`x/(3×4) + x/(4×5) =4/15`
`⇔ x × [1/(3×4) + 1/(4×5)] = 4/15`
`⇔ x × [1/3 - 1/4 + 1/4-1/5]=4/15`
`⇔ x × [1/3 + (-1/4 + 1/4) - 1/5] = 4/15`
`⇔ x × [1/3 - 1/5]=4/15`
`⇔ x × [5/15 - 3/15]=4/15`
`⇔ x × 2/15=4/15`
`⇔x=4/15 ÷ 2/15`
`⇔x=4/15 × 15/2`
`⇔x=2`
Vậy `x=2`