\(Min_A=\dfrac{4ac-b^2}{4a}=\dfrac{4.1.11-\left(-6\right)^2}{4}=2\) khi \(x=-\dfrac{b}{2a}=-\dfrac{-6}{2}=3\)
b) \(B=x^2-20x+101\)
\(Min_B=\dfrac{4ac-b^2}{4a}=\dfrac{4.1.101-\left(-20\right)^2}{4}=1\) khi \(x=-\dfrac{b}{2a}=-\dfrac{-20}{2}=10\)
c) \(C=5x-x^2\)
\(Max_C=\dfrac{4ac-b^2}{4a}=\dfrac{4.\left(-1\right).0-5^2}{4.\left(-1\right)}=\dfrac{25}{4}\) khi \(x=-\dfrac{b}{2a}=-\dfrac{5}{2.\left(-1\right)}=\dfrac{5}{2}\)