Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tìm xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn, trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10.A. 0,1 B. $\frac{48}{105}$ C. 0,17 D. $\frac{99}{667}$
Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca, tính xác suất để trong 4 người được chọn có ít nhất 3 nữ. A. $\displaystyle \frac{70}{143}.$ B. $\displaystyle \frac{73}{143}.$ C. $\displaystyle \frac{56}{143}.$ D. $\displaystyle \frac{87}{143}.$
Số $\displaystyle 2389976875$ có bao nhiêu ước số nguyên?A. $\displaystyle 240$ B. $\displaystyle 408$ C. $\displaystyle 204$ D. $\displaystyle 48$
Cho A={0, 1, 2, 3, 4, 5}. Từ tập A có thể lập được số các số tự nhiên có 3 chữ số chia hết cho 5 làA. 60. B. 36. C. 120. D. 20.
Một hộp dựng 10 viên bi xanh và 5 viên bi vàng. Số cách lấy ra 5 viên bi trong đó có 3 viên bi màu xanh làA. 3003. B. 252. C. 1200. D. 14400.
Các thành phố A, B, C, D được nối với nhau bởi các con đường như hình vẽ. Hỏi có bao nhiêu cách đi từ A đến D rồi quay lại A? A. 1296. B. 784. C. 576. D. 324.
Trên mặt phẳng, cho 10 điểm bất kì, lập được số vecto khác vecto không làA. A102. B. 2A102. C. A101. D. A82.
Trong mặt phẳng tọa độ $Oxy$. Ở góc phần tư thứ nhất ta lấy$2$ điểm phân biệt; cứ thế ở các góc phần tư thứ hai, thứ ba, thứ tư ta lần lượt lấy$3,\text{ }4,\text{ }5$ điểm phân biệt (các điểm không nằm trên các trục tọa độ). Trong$14$ điểm đó ta lấy$2$ điểm bất kỳ. Tính xác suất để đoạn thẳng nối hai điểm đó cắt hai trục tọa độ.A. $\frac{68}{91}.$ B. $\frac{23}{91}.$ C. $\frac{8}{91}.$ D. $\frac{83}{91}.$
Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để biến cố có tổng hai mặt bằng $\displaystyle 8.$A. $\displaystyle \frac{1}{6}.$ B. $\displaystyle \frac{5}{36}.$ C. $\displaystyle \frac{1}{9}.$ D. $\displaystyle \frac{1}{2}.$
Nghiệm dương của phương trình : Cn+1n+Pn=10 làA. 1. B. 2. C. 0. D. 3.
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến