Tìm tất cả cặp số nguyên \(\left( {x;y} \right)\) thỏa mãn \(2020\left( {{x^2} + {y^2}} \right) - 2019\left( {2xy + 1} \right) = 5\).
A.\(\left( {x;y} \right) \in \left\{ {\left( { 1; 2} \right);\left( { 2; 1} \right);\left( {1; - 2} \right);\left( {2; - 1} \right)} \right\}.\)
B.\(\left( {x;y} \right) \in \left\{ {\left( { - 1;2} \right);\left( { - 2;1} \right);\left( { - 1; - 2} \right);\left( { - 2; - 1} \right)} \right\}.\)
C.\(\left( {x;y} \right) \in \left\{ {\left( { - 1;2} \right);\left( { - 2;1} \right);\left( {1; - 2} \right);\left( {2; - 1} \right)} \right\}.\)
D.\(\left( {x;y} \right) \in \left\{ {\left( { 1;2} \right);\left( { 2;1} \right);\left( {- 1; - 2} \right);\left( { - 2; - 1} \right)} \right\}.\)