Đáp án: $g'\left( x \right) = \left( {4x + 4} \right).f'\left( {{x^2} + 2x + m} \right).f\left( {{x^2} + 2x + m} \right)$
Giải thích các bước giải:
$\begin{array}{l}
g\left( x \right) = {f^2}\left( {{x^2} + 2x + m} \right)\\
\Leftrightarrow g'\left( x \right) = 2.\left( {{x^2} + 2x + m} \right)'\\
.f'\left( {{x^2} + 2x + m} \right).f\left( {{x^2} + 2x + m} \right)\\
\Leftrightarrow g'\left( x \right) = 2.\left( {2x + 2} \right).f'\left( {{x^2} + 2x + m} \right).f\left( {{x^2} + 2x + m} \right)\\
\Leftrightarrow g'\left( x \right) = \left( {4x + 4} \right).f'\left( {{x^2} + 2x + m} \right).f\left( {{x^2} + 2x + m} \right)
\end{array}$