Tinh
\(\dfrac{0,4-\dfrac{2}{9}+\dfrac{2}{11}}{1,4-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-0.25+\dfrac{1}{5}}{1\dfrac{1}{6}-0,875+0,7}\)
\(\dfrac{0,4-\dfrac{2}{9}+\dfrac{2}{11}}{1,4-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-0,25+\dfrac{1}{5}}{1\dfrac{1}{6}-0,875+0,7}\\ =\dfrac{2\left(0,2-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7\left(0,2-\dfrac{1}{9}+\dfrac{1}{11}\right)}-\dfrac{2\left(\dfrac{1}{6}-0,125+0,1\right)}{7\left(\dfrac{1}{6}-0,125+0,1\right)}\\ =\dfrac{2}{7}-\dfrac{2}{7}\\ =0\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}2x^2+y^2-3xy-4x+3y+2=0\\\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\end{matrix}\right.\)
cho a,b Thuộc N và a,b chia cho 7 có cùng số dư, chứng minh (a-b) chia hết cho 7
Bài 1 : Tìm x , biết :
a. 4-(15-x)=7
b.-12+(-9+x)=0
c.(x+12)-(x-35)=x-17
Giúp mk với nha
Mong các bạn giúp đỡ
CM BĐT
a/ \(2a^2+b^2+c^2\ge2a\left(b+c\right)\) \(\forall a,b\)
b/ \(a^2+2b^2+12\ge2b\left(3-a\right)\) \(\forall a,b\)
c/ \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\) \(\forall a,b\)
Cho A= 2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9. Không tính, hãy chứng tỏ A:7
Giúp mik vs
Mik cần cho ngày mai
Cho tam giác abc. Bc là 15 goc b là 30 góc c là 50. Ah là đường cao. Tính AH
Giải hệ phương trình sau:\(\left\{{}\begin{matrix}\left(x-y+3\right)\sqrt{x+2}=\sqrt{y}\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\end{matrix}\right.\)
Cho a,b,c > 0 và a+b+c =6
Tìm Max của bt \(P=\dfrac{a-1}{a}+\dfrac{b-1}{b}+\dfrac{c-4}{c}\)
Rút gọn biểu thức: \(\dfrac{x^4y-xy^4}{x^2+xy+y^2}\)
a) Thực hiện phép tính: \(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}+\dfrac{y}{y-x}\)
b) Tìm x biết: \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
cho mình hỏi :
cho điểm M (4:1) và hai điểm A(a:0),B(0:b) với a,b >0, và A,B,M thẳng hàng . Gỏi a0, b0 là giá trị của a,b để diện tích tam giác OAB nhỏ nhất . Giá trị 3a0 - 2b0 là gì ?
=>Mình xin | cảm ơn |
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến