Trong tế bào bình thường của một loài thực vật lưỡng bội, xét 4 gen A, B, C, D, trong đó gen A nằm trên nhiễm sắc thể số 1, gen B nằm trên nhiễm sắc thể số 2 trong nhân tế bào, gen C nằm trong ti thể, gen D nằm trong lục lạp. Biết không xảy ra đột biến. Theo lí thuyết, có bao nhiêu phát biểu sau đây đúng?(I) Trong mỗi tế bào, gen A chỉ có 2 bản sao nhưng gen D có thể có nhiều bản sao.(II) Quá trình phiên mã của gen C và gen D luôn diễn ra ở trong nhân tế bào.(III) Gen D nhân đôi độc lập với gen C.(IV) Khi gen B phiên mã, nếu có chất 5-BU thấm vào tế bào thì có thể sẽ làm phát sinh đột biến gen dạng thay thế cặp A-T bằng cặp G-X.A.2B.3C.4D.1
Biết \(I = \int\limits_1^5 {\dfrac{{2\left| {x - 2} \right| + 1}}{x}dx = 4 + a\ln 2 + b\ln 5} \) với \(a,\,\,b\) là các số nguyên. Tính \(S = a - b?\)A.\(S = 9\)B.\(S = - 3\)C.\(S = 11\)D.\(S = 5\)
Tìm tất cả các giá trị của tham số \(m\) sao cho \(y = \dfrac{1}{3}{x^3} - \dfrac{1}{2}m{x^2} + 2mx - 3m + 4\) nghịch biến trên một đoạn có độ dài là \(3?\)A.\(m = - 1,\,\,m = 9\)B.\(m = 1;\,\,m = - 9\) C.\(m = - 1\) D.\(m = 9\)
Cho hai vectơ \(\overrightarrow a = \left( {1;1; - 2} \right),\,\,\overrightarrow b = \left( {1;0;m} \right)\). Góc giữa chúng bằng \({45^0}\) khi:A.\(m = 2 + \sqrt 5 \) B.\(m = 2 \pm \sqrt 6 \)C.\(m = 2 - \sqrt 6 \)D.\(m = 2 + \sqrt 6 \)
Cắt hình trụ bởi mặt phẳng \(\left( \alpha \right)\) vuông góc với mặt đáy, ta được thiết diện là hình vuông có diện tích bằng 16. Khoảng cách từ tâm đường tròn đáy của hình trụ đến mặt phẳng \(\left( \alpha \right)\) bằng 3. Thể tích khối trụ bằng:A.\(2\sqrt 3 \pi \)B.\(52\pi \)C.\(\dfrac{{52\pi }}{3}\)D.\(13\pi \)
Trên mặt phẳng tọa độ \(Oxy,\) gọi \(M\) là điểm biểu diễn hình học của số phức \(z = - 1 + 2i\) và \(\alpha \) là góc lượng giác có tia đầu \(Ox,\) tia cuối \(OM.\) Tính \(\tan 2\alpha .\)A.\( - \dfrac{3}{4}\)B.\( - 1\)C.\( - \dfrac{4}{3}\)D.\(\dfrac{4}{3}\)
Tập xác định của hàm số \(y = {\left( {x - 1} \right)^{\dfrac{1}{5}}}\) làA.\(\left( {0; + \infty } \right)\) B.\(\mathbb{R}\)C.\(\left( {1; + \infty } \right)\) D.\(\left[ {1; + \infty } \right)\)
Cho hàm số bậc 3 có dạng \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\)Hãy chọn đáp án đúng?A.Đồ thị (IV) xảy ra khi \(a > 0\) và \(f'\left( x \right) = 0\) có nghiệm kép. B.Đồ thị (I) xảy ra khi \(a < 0\) và \(f'\left( x \right) = 0\) có hai nghiệm phân biệt.C.Đồ thị (III) xảy ra khi \(a > 0\) và \(f'\left( x \right) = 0\) vô nghiệm. D.Đồ thị (II) xảy ra khi \(a e 0\) và \(f'\left( x \right) = 0\) có hai nghiệm phân biệt.
Xếp \(1\) học sinh lớp A, \(2\) học sinh lớp B, \(5\) học sinh lớp C thành một hàng ngang. Tính xác suất sao cho học sinh lớp A chỉ đứng cạnh học sinh lớp B.A.\(\dfrac{2}{5}\) B.\(\dfrac{9}{{28}}\) C.\(\dfrac{1}{5}\)D.\(\dfrac{3}{{28}}\)
Trong không gian với hệ tọa độ \(Oxyz,\) cho vecto \(\overrightarrow {AO} = 3\left( {\overrightarrow i + 4\overrightarrow j } \right) - 2\overrightarrow k + 5\overrightarrow j .\) Tọa độ điểm \(A\) là:A.\(\left( {3;\,\,17;\, - 2} \right)\) B.\(\left( { - 3; - 17;\,\,2} \right)\) C.\(\left( {3; - 2;\,\,5} \right)\)D.\(\left( {3;\,\,5; - 2} \right)\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến