Đáp án đúng: A
Giải chi tiết:Cách giải:
Gọi \(A\left( {a;\,\,0;\,\,0} \right),\,\,B\left( {0;\,b;\,0} \right),\,\,C\left( {0;\,0;\,c} \right)\) lần lượt thuộc các trục tọa độ \(Ox,\,Oy,\,Oz.\)
Khi đó ta có phương trình \(\left( \alpha \right)\) đi qua các điểm \(A,\,\,B,\,\,C:\,\,\,\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.\)
\(H \in \left( \alpha \right) \Rightarrow \frac{1}{a} + \frac{2}{b} - \frac{2}{c} = 1\,\,\,\,\,\left( 1 \right)\)
Theo đề bài ta có \(H\) là trực tâm \(\Delta ABC \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH} \bot \overrightarrow {BC} \\\overrightarrow {BH} \bot \overrightarrow {AC} \end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {BH} .\overrightarrow {AC} = 0\end{array} \right..\)
Ta có: \(\left\{ \begin{array}{l}\overrightarrow {AH} = \left( {1 - a;\,\,2; - 2} \right),\,\,\overrightarrow {BC} = \left( {0; - b;\,\,c} \right)\\\overrightarrow {BH} = \left( {1;\,2 - b; - 2} \right),\,\,\,\overrightarrow {AC} = \left( { - a;\,0;\,c} \right)\end{array} \right.\)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {BH} .\overrightarrow {AC} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2b - 2c = 0\\ - a - 2c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 2c\\b = - c\end{array} \right.\\ \Rightarrow \left( 1 \right) \Leftrightarrow \frac{1}{{ - 2c}} + \frac{2}{{ - c}} - \frac{2}{c} = 1 \Rightarrow - \frac{9}{{2c}} = 1 \Leftrightarrow c = - \frac{9}{2}\\ \Rightarrow \left\{ \begin{array}{l}a = - 2c = 9\\b = - c = \frac{9}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\left( {9;\,\,0;\,\,0} \right)\\B\left( {0;\,\frac{9}{2};\,0} \right)\\C\left( {0;\,0; - \frac{9}{2}} \right)\end{array} \right..\end{array}\)
Gọi \(I\left( {{x_0};\,{y_0};\,{z_0}} \right)\) là tâm mặt cầu ngoại tiếp hình chóp tứ giác \(OABC.\)