1. Công thức cộng

\(\begin{array}{l}\sin (a + b) = \sin a.\cos b + \sin b.\cos a\\\sin (a - b) = \sin a.\cos b - \sin b.\cos a\\\cos (a + b) = \cos a.\cos b - \sin a.\sin b\\\cos (a - b) = \cos a.\cos b + \sin a.\sin b\\\tan (a + b) = \dfrac{{\tan a + \tan b}}{{1 - \tan a.\tan b}}\\\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}\end{array}\)

2. Công thức nhân đôi, hạ bậc

a) Công thức nhân đôi

$\sin 2\alpha = 2\sin \alpha .\cos \alpha$

$\cos 2\alpha \,\, = \,\,{\cos ^2}\alpha - {\sin ^2}\alpha \,\, = \,\,2{\cos ^2}\alpha - 1\,$ \(= \,\,1 - 2{\sin ^2}\alpha \)

\(\tan 2\alpha \,\, = \,\,\dfrac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }}\)

b) Công thức hạ bậc

\(\begin{array}{c}{\sin ^2}\alpha \,\, = \,\,\dfrac{{1 - \cos 2\alpha }}{2}\\{\cos ^2}\alpha \, = \,\,\dfrac{{1 + \cos 2\alpha }}{2}\\{\tan ^2}\alpha \, = \,\,\dfrac{{1 - \cos 2\alpha }}{{1 + \cos 2\alpha }}\end{array}\)

3. Công thức biến đổi tích thành tổng

$\cos a\cos b $ $= \dfrac{1}{2}\left[ {\cos (a + b) + \cos (a - b)} \right]$

$\sin a\sin b $ $= - \dfrac{1}{2}\left[ {\cos (a + b) - \cos (a - b)} \right]$

$\sin a\cos b $ $= \dfrac{1}{2}\left[ {\sin (a + b) + \sin (a - b)} \right]$

4. Công thức biển đổi tổng thành tích

$\begin{array}{l}\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}.\cos \dfrac{{a - b}}{2}\\\cos a - \cos b = - 2\sin \dfrac{{a + b}}{2}.\sin \dfrac{{a - b}}{2}\\\sin a + \sin b = 2\sin \dfrac{{a + b}}{2}.\cos \dfrac{{a - b}}{2}\\\sin a - \sin b = 2\cos \dfrac{{a + b}}{2}.\sin \dfrac{{a - b}}{2}\\\tan a + \tan b = \dfrac{{\sin (a + b)}}{{\cos a.\cos b}}\\\tan a - \tan b = \dfrac{{\sin (a - b)}}{{\cos a.\cos b}}\\\cot a + \cot b = \dfrac{{\sin (a + b)}}{{\sin a.\sin b}}\\\cot a - \cot b = \dfrac{{\sin (b - a)}}{{\sin a.\sin b}}\end{array}$

Bài viết gợi ý: