1.
+ Ta có: \(\overrightarrow{AB}=(-1;-3;-1),\overrightarrow{AC}=(2;-5;2)\)
Dễ thấy 2 véc tơ \(\overrightarrow{AB}=(-1;-3;-1),\overrightarrow{AC}=(2;-5;2)\) không cùng phương, do đó A, B, C là 3 đỉnh của một tam giác.
+ Gọi G(xG; yG; zG) là trọng tâm tam giác ABC. Ta có:
\(\left\{\begin{matrix} x_{G}=\frac{1+0+3}{3}=\frac{4}{3}\\y_{G} =\frac{2-1-3}{3}=-\frac{2}{3} \\z_{G}=\frac{1+0+3}{3}=\frac{4}{3} \end{matrix}\right.\Rightarrow G\left ( \frac{4}{3};-\frac{2}{3};\frac{4}{3} \right )\)
2.
Ta có: \(\overrightarrow{BA}=(1;3;1),\overrightarrow{BC}=(3;-2;3)\Rightarrow \overrightarrow{BA}.\overrightarrow{BC}=1.3+3.(-2)+1.3=0\Rightarrow \overrightarrow{BA}\perp \overrightarrow{BC}\)
\(\Rightarrow \triangle ABC\) lfa tam giác vuông tại B
Do đó, ABCD là hình chữ nhật \(\Leftrightarrow \overrightarrow{AB}=\overrightarrow{DC}\)
Gọi D(x0 ; y0 ; z0 ), Khi đó: \(\overrightarrow{AB}=(-1;-3;-1),\overrightarrow{DC}=(3-x_{0};-3-y_{0};3-z_{0})\)
\(\overrightarrow{AB}=\overrightarrow{DC}\Leftrightarrow \left\{\begin{matrix} -1=3-x_{0}\\-3=-3-y_{0} \\-1=3-z_{0} \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_{0}=4\\y_{0}=0 \\z_{0}=4 \end{matrix}\right.\Rightarrow D(4;0;4)\)
Vậy \(D(4;0;4)\) là điểm cần tìm