+ Tính \({V_{ABC.A'B'C'}}\) .
Ta có \(A'G \bot \left( {ABC} \right) \Rightarrow A'G\) là chiều cao của lăng trụ ABC.A'B'C'.
Diện tích tam giác đều ABC là: \({S_{ABC}} = A{B^2}.\frac{{\sqrt 3 }}{4} = 2{a^2}\sqrt 3\).
Gọi là trung điểm của , ta có: \(AM = BC.\frac{{\sqrt 3 }}{2} = 2a\sqrt 2 .\frac{{\sqrt 3 }}{2} = a\sqrt 6\)
\(AG = \frac{2}{3}AM = \frac{{2a\sqrt 6 }}{3}\)
Trong \(\Delta A'GA\) vuông tại G, ta có \(A'G = \sqrt {A'{A^2} - A{G^2}} = \sqrt {3{a^2} - \frac{8}{3}{a^2}} = \frac{{a\sqrt 3 }}{3}\).
Thể tích khối lăng trụ ABC.A'B'C' là:
\({V_{ABC.A'B'C'}} = {S_{ABC}}.A'G = 2{a^3}\)
+ Tính \(d\left( {C,\left( {ABB'A'} \right)} \right)\)
Gọi N là trung điểm của AB.
Trong \(\Delta A'GN\), kẻ \(GH \bot A'N\).
Chứng minh được \(GH \bot \left( {ABB'A'} \right)\) tại H.
Suy ra \(d\left( {G,\left( {ABB'A'} \right)} \right) = GH\).
Ta có \(CN = AM = a\sqrt 6\), \(GN = \frac{1}{3}CN = \frac{{a\sqrt 6 }}{3}\) .
\(\frac{1}{{G{H^2}}} = \frac{1}{{A'{G^2}}} + \frac{1}{{G{N^2}}} = \frac{3}{{{a^2}}} + \frac{9}{{6{a^2}}} = \frac{9}{{2{a^2}}}\) \(\Rightarrow GH = \frac{{a\sqrt 2 }}{3}\)
Do đó \(d\left( {G,\left( {ABB'A'} \right)} \right) = GH = \frac{{a\sqrt 2 }}{3}\).
Vậy \(d\left( {C,\left( {ABB'A'} \right)} \right) = 3d\left( {G,\left( {ABB'A'} \right)} \right) = a\sqrt 2\).