a. $x^2-36=0$
$⇔(x+6)(x-6)=0$
$⇔\left[ \begin{array}{l}x+6=0\\x-6=0\end{array} \right.⇔\left[ \begin{array}{l}x=-6\\x=6\end{array} \right.$
Vậy $x=-6$ hoặc $x=6$
b. $x^2-2x=-1$
$⇔x^2-2x+1=0$
$⇔(x-1)^2=0$
$⇔x-1=0$
$⇔x=1$
Vậy $x=1$
c. $x^3+3x^2=-3x-1$
$⇔x^3+3x^2+3x+1=0$
$⇔(x+1)^3=0$
$⇔x+1=0$
$⇔x=-1$
Vậy $x=-1$.