a) ĐKXĐ:x≥0;xe4;xe9A=(x−5x+6x+2−2−xx+3−x−3x+2):(2−x+1x)=((x−2)(x−3)x+2+(x−2)(x−3)(x+3)(x−3)−(x−2)(x−3)(x+2)(x−2)):(x+12(x+1)−x+1x)=(x−2)(x−3)x+2+x−9−x+4:x+12x+2−x=(x−2)(x−3)x−3:x+1x+2=(x+2)(x−2)x+1=x−4x+1
b) A1≤51⇔A≥5⇔x−4x+1≥5⇔x−4x+1−5≥0⇔x−4x+1−5(x−4)≥0⇔x−4x+1−5x+20≥0⇔x−4x−5x+21≥0⇔x−2(x−101+421)(x−101−421)≥0