$[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}(\dfrac{x^2}{y}-\dfrac{y^2}{x})]:\dfrac{x-y}{x}$
$=[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}(\dfrac{x^3-y^3}{xy}].\dfrac{x}{x-y}$
$=[\dfrac{x^2-y^2}{xy}-\dfrac{x^3-y^3}{xy(x+y)}].\dfrac{x}{x-y}$
$=[\dfrac{(x^2-y^2)(x+y)-x^3+y^3}{xy(x+y)}].\dfrac{x}{x-y}$
$=[\dfrac{x^3-xy^2+x^2y-y^3-x^3+y^3}{xy(x+y)}].\dfrac{x}{x-y}$
$=\dfrac{x^2y-xy^2}{xy(x+y)}.\dfrac{x}{x-y}$
$=\dfrac{xy(x-y)}{xy(x+y)}.\dfrac{x}{x-y}$
$=\dfrac{x}{x+y}$