$L=12\,\,\left( cm \right)$
$t=10\,\,\left( s \right)$
$N=20$
$x=3\,\,\left( cm \right)$
…………………
$L=2A\,\,\to \,\,A=\dfrac{L}{2}=\dfrac{12}{2}=6\,\,\left( cm \right)$
$T=\dfrac{t}{n}=\dfrac{10}{20}=0,5\,\,\left( s \right)$
$\omega =\dfrac{2\pi }{T}=\dfrac{2\pi }{0,5}=4\pi \,\,\left( rad/s \right)$
$\begin{cases}x=3\,\,\left(cm\right)\\A=6\,\,\left(cm\right)\end{cases}\,\,\,\to\,\,\,x=\dfrac{A}{2}$
$x=\dfrac{A}{2}$ và đi theo chiều dương
$\to \varphi =-\dfrac{\pi }{3}$
Phương trình dao động:
$\,\,\,\,\,\,\,x=A\cos \left( \omega t+\varphi \right)$
$\to x=6\cos \left( 4\pi t-\dfrac{\pi }{3} \right)\,\,\,\,\,\left( cm \right)$