Đáp án:
`T _{min}=2\sqrt{3}` khi `x=4`
Giải thích các bước giải:
`A={25\sqrt{x}+6}/{x-36}-{\sqrt{x}-1}/{6-\sqrt{x}}+{2\sqrt{x}}/{\sqrt{x}+6}` $(x\ge 0; x\ne 36)$
`A={25\sqrt{x}+6+(\sqrt{x}-1)(\sqrt{x}+6)+2\sqrt{x}.(\sqrt{x}-6)}/{(\sqrt{x}-6)(\sqrt{x}+6)}`
`A={25\sqrt{x}+6+x+5\sqrt{x}-6+2x-12\sqrt{x}}/{(\sqrt{x}-6)(\sqrt{x}+6)}`
`A={3x+18\sqrt{x}}/{(\sqrt{x}-6)(\sqrt{x}+6)}`
`A={3\sqrt{x}.(\sqrt{x}+6)}/{(\sqrt{x}-6)(\sqrt{x}+6)}`
`A={3\sqrt{x}}/{\sqrt{x}-6}`
$\\$
`B={x-6\sqrt{x}}/{\sqrt{x}-1}` $(x\ne 1; x\ge 0)$
`B={\sqrt{x}.(\sqrt{x}-6)}/{\sqrt{x}-1}`
$\\$
`T=\sqrt{A.B}`
`T=\sqrt{{3\sqrt{x}}/{\sqrt{x}-6}.{\sqrt{x}.(\sqrt{x}-6)}/{\sqrt{x}-1}}`
`T=\sqrt{{3x}/{\sqrt{x}-1}}`
`T` xác định khi `{3x}/{\sqrt{x}-1}\ge 0`
Mà `x\ge 0=>\sqrt{x}-1> 0`
`<=>\sqrt{x}>1<=>x>1`
Ta có:
`\qquad {3x}/{\sqrt{x}-1}`
`={3(x-2\sqrt{x}+1)+3+6(\sqrt{x}-1)}/{\sqrt{x}-1}`
`={3(\sqrt{x}-1)^2}/{\sqrt{x}-1}+3/{\sqrt{x}-1}+{6(\sqrt{x}-1)}/{\sqrt{x}-1}`
`=3(\sqrt{x}-1)+3/{\sqrt{x}-1}+6`
`\ge 2\sqrt{3.(\sqrt{x}-1). 3/{\sqrt{x}-1}}+6` (BĐT Cosi)
`\ge 2\sqrt{9}+6=12`
`=>T=\sqrt{{3x}/{\sqrt{x}-1}} \ge \sqrt{12}=2\sqrt{3}`
Dấu `=` xảy ra khi:
`\qquad 3(\sqrt{x}-1)=3/{\sqrt{x}-1}`
`<=>3(\sqrt{x}-1)^2=3`
`<=>(\sqrt{x}-1)^2=1`
`<=>`$\left[\begin{array}{l}\sqrt{x}-1=1\\\sqrt{x}-1=-1\end{array}\right.$
`<=>`$\left[\begin{array}{l}\sqrt{x}=2\\\sqrt{x}=0\end{array}\right.$
`<=>`$\left[\begin{array}{l}x=4( T M)\\x=0(loại)\end{array}\right.$
Vậy $GTNN$ của $T$ bằng `2\sqrt{3}` khi `x=4`