Bài 4:
Đk:\(x\in\left\{-\infty;\infty\right\}\)
\(pt\Leftrightarrow x^2-x-6+10=2\sqrt{x^2-x+4}\)
\(\Leftrightarrow x^2-x+4=2\sqrt{x^2-x+4}\)
Đặt \(\sqrt{x^2-x+4}=t\left(t\ge0\right)\) ta được:
\(t^2=2t\Leftrightarrow t^2-2t=0\Leftrightarrow t\left(t-2\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}t=0\\t=2\end{array}\right.\) (thỏa mãn)
Xét \(t=0\Rightarrow\sqrt{x^2-x+4}=0\)\(\Delta=\left(-1\right)^2-4\left(1.4\right)=-15< 0\) (vô nghiệm)
Xét \(t=2\Leftrightarrow\sqrt{x^2-x+4}=2\Leftrightarrow x^2-x+4=4\)\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\) (thỏa mãn)