Đáp án:
`1)`
`5x^2-6x+1=0`
`<=>5x^2-5x-x+1=0`
`<=>5x.(x-1)-(x-1)=0`
`<=>(5x-1)(x-1)=0`
`<=>`\(\left[ \begin{array}{l}5x-1=0\\x-1=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=\dfrac{1}{5}\\x=1\end{array} \right.\)
Vậy `S={1/5;1}`
`2)`
`2x^2-4x-5=0`
`<=>2x^2-4x+2-7=0`
`<=>(\sqrt{2}.x)^2-2.\sqrt{2}x.\sqrt{2}+(\sqrt{2})^2-7=0`
`<=>(\sqrt{2}.x-\sqrt{2})^2=7`
`<=>(\sqrt{2})^2.(x-1)^2=7`
`<=>2(x-1)^2=7`
`<=>(x-1)^2=(7)/(2)=(±(\sqrt{14})/(2))^2`
`<=>`\(\left[ \begin{array}{l}x-1=\dfrac{\sqrt{14}}{2}\\x-1=-\dfrac{\sqrt{14}}{2}\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=\dfrac{\sqrt{14}}{2}+1\\x=-\dfrac{\sqrt{14}}{2}+1\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=\dfrac{2+\sqrt{14}}{2}\\x=\dfrac{2-\sqrt{14}}{2}\end{array} \right.\)
Vậy `S={(2-\sqrt{14})/(2);(2+\sqrt{14})/(2)}`
`3)`
`x^2+2x-3=0`
`<=>x^2+3x-x-3=0`
`<=>x.(x+3)-(x+3)=0`
`<=>(x-1).(x+3)=0`
`<=>`\(\left[ \begin{array}{l}x-1=0\\x+3=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=1\\x=-3\end{array} \right.\)
Vậy `S={-3;1}`
`4)`
`x^2-2x-8=0`
`<=>x^2-4x+2x-8=0`
`<=>x.(x-4)+2.(x-4)=0`
`<=>(x+2).(x-4)=0`
`<=>`\(\left[ \begin{array}{l}x+2=0\\x-4=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=-2\\x=4\end{array} \right.\)
Vậy `S={-2;4}`
`5)`
`x^2-15x-16=0`
`<=>x^2-16x+x-16=0`
`<=>x.(x-16)+(x-16)=0`
`<=>(x+1).(x-16)=0`
`<=>`\(\left[ \begin{array}{l}x+1=0\\x-16=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=-1\\x=16\end{array} \right.\)
Vậy `S={-1;16}`