Đáp án + Giải thích các bước giải:
Câu `10` :
`a)` Ta có : `4x^2=1=>x^2=1/4=>x=1/2` ( vì `xne -1/2` )
Thay `x = 1/2` vào biểu thức `B` ta có :
`B=(x^2-x)/(2x+1)=[(1/2)^2-1/2]/[2*1/2+1]=(1/4-1/2)/2=(-1/4):2=-1/8`
Vậy `B=-1/8`
`b)`
+ Rút gọn biểu thức `A` :
`A=1/(x-1) - x/(1-x^2)=1/(x-1)+x/(x^2-1)` $\\$ `= (x+1)/[(x-1)(x+1)]+x/[(x-1)(x+1)]=(x+1+x)/[(x-1)(x+1)]=(2x+1)/[(x-1)(x+1)]`
`M=A*B=(2x+1)/[(x-1)(x+1)]*[x(x-1)]/(2x+1)=x/(x+1)`
`c)` `x/(x+1)<1<=>x/(x+1)-1<0 <=>x/(x+1)-(x+1)/(x+1)<0` $\\$ `<=> (x-x-1)/(x+1)<0<=>(-1)/(x+1)<0<=>x+1>0` ( vì `x ne -1` )
`<=>x> -1`
Câu `11` :
`a)` `|x-1|=2 => `\(\left[ \begin{array}{l}x-1=2\\x-1=-2\end{array} \right.\) $\\$ `=> `\(\left[ \begin{array}{l}x=3(tm)\\x=-1(ktm)\end{array} \right.\)
Thay `x = 3` vào biểu thức `A` ta có :
`A=(x^2-2x)/(x+1)=(3^2-2*3)/(3+1)=(9-6)/4=3/4`
Vậy `A=3/4`
`b)`
+ Rút gọn `B` :
`B=(x+2)/(x-2)-(x-2)/(x+2)-16/(4-x^2)` $\\$ `= (x+2)/(x-2) - (x-2)/(x+2)+16/(x^2-4)` $\\$ `= [(x+2)(x+2)]/[(x-2)(x+2)]-[(x-2)(x-2)]/[(x-2)(x+2)]+16/[(x-2)(x-2)]` $\\$ `= (x^2+4x+4-(x^2-4x+4)+16)/[(x-2)(x+2)]` $\\$ `= (x^2 + 4x + 4 - x^2 + 4x - 4 + 16)/[(x-2)(x+2)]` $\\$ `= (8x + 16)/[(x-2)(x+2)]=[8(x+2)]/[(x-2)(x+2)]=8/(x-2)`
+ Rút gọn `P` :
`P=A*B=(x^2-2x)/(x+1)*8/(x-2)=[x(x-2)]/(x+1)*8/(x-2)=(8x)/(x+1)`
`c)`
`P<8<=>(8x)/(x+1)<8<=>(8x)/(x+1)-8<0` $\\$ `<=>(8x)/(x+1)-[8(x+1)]/(x+1)<0 ` $\\$ `<=>(8x-8x-8)/(x+1)<0` $\\$ `<=> (-8)/(x + 1)<0`
Vì `-8<0<=>x+1>0<=>x> -1` ( do `x ne -1`)