`***` Lời giải chi tiết `***`
`|x-(7)/(2)|-(1)/(4)=(5)/(4)`
`=>|x-(7)/(2)|=(3)/(2)`
`=>` \(\left[ \begin{array}{l}x-\dfrac{7}{2}=\dfrac{3}{2}\\x-\dfrac{7}{2}=-\dfrac{3}{2}\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}x=5\\x=2\end{array} \right.\)
Vậy `x∈{5;2}`
``
`2|x-(3)/(4)|+5=7`
`=>2|x-(3)/(4)|=2`
`=>|x-(3)/(4)|=1`
`=>` \(\left[ \begin{array}{l}x-\dfrac{3}{4}=1\\x-\dfrac{3}{4}=-1\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}x=\dfrac{7}{4}\\x=-\dfrac{1}{4}\end{array} \right.\)
Vậy `x∈{(7)/(4);-(1)/(4)}`
``
`(2x+5^{4})(3x-(1)/(2))=0`
`=>(2x+625)(3x-(1)/(2))=0`
`=>` \(\left[ \begin{array}{l}2x+625=0\\3x-\dfrac{1}{2}=0\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}2x=-625\\3x=\dfrac{1}{2}\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}x=-\dfrac{625}{2}\\x=\dfrac{1}{6}\end{array} \right.\)
Vậy `x∈{-(625)/(2);(1)/(6)}`
``
`(1)/(2)x+(2)/(3)(x-1)=(1)/(3)`
`=>(1)/(2)x+(2)/(3)x-(2)/(3)=(1)/(3)`
`=>(7)/(6)x=1`
`=>x=(6)/(7)`