Ta có:
`S = 1/31 + 1/32 + ... + 1/60`
`A = (1/31 + 1/32 + ... + 1/40) + (1/141 + 1/42 + ... + 1/50) + (1/51 + 1/52 + ... + 1/60)`
Mà:
`1/31 + 1/32 + ... + 1/40 > 1/40 + 1/40 + ... + 1/40`
`1/41 + 1/42 + ... + 1/50 > 1/50 + 1/50 + ... + 1/50`
`1/51 + 1/52 + ... + 1/60 > 1/60 + 1/60 + ... + 1/60`
Công vế với vế lại ta có:
`(1/31 + 1/32 + ... + 1/40) + (1/141 + 1/42 + ... + 1/50) + (1/51 + 1/52 + ... + 1/60) > (1/40 + 1/40 + ... + 1/40) + (1/50 + 1/50 + ... + 1/50) + (1/60 + 1/60 + ... + 1/60)`
`=> S > 10 . 1/40 + 10. 1/50 + 10 . 1/60`
`=> S > 1/4 + 1/5 + 1/6`
`=> S > 3/5 (1)`
Tương tự:
`1/31 + 1/32 + ... + 1/40 < 1/31 + 1/31 + ... + 1/31`
`1/41 + 1/42 + ... + 1/50 < 1/41 + 1/41 + ... + 1/41`
`1/51 + 1/52 + ... + 1/60 < 1/51 + 1/51 + ... + 1/51`
Cộng vế với vế lại ta có:
`(1/31 + 1/32 + ... + 1/40) + (1/141 + 1/42 + ... + 1/50) + (1/51 + 1/52 + ... + 1/60) < (1/31 + 1/31 + ... + 1/31) + ( 1/41 + 1/41 + ... + 1/41) + (1/51 + 1/51 + ... + 1/51)`
`=> S < 10 . 1/31 + 10. 1/41 + 10 . 1/51`
Mà `10 . 1/31 + 10. 1/41 + 10 . 1/51 < 10 . 1/30 + 10 . 1/40 + 10 . 1/50`
`=> S < 10 . 1/30 + 10 . 1/40 + 10 . 1/50`
`=> S < 1/3 + 1/4 + 1/5`
`=> S < 4/5 (2)`
Từ `(1) ; (2)`
`=> 3/5 < S < 4/5`