Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
17,\\
a,\\
\dfrac{{5 + 2\sqrt 5 }}{{\sqrt 5 + \sqrt 2 }} = \dfrac{{\left( {5 + 2\sqrt 5 } \right)\left( {\sqrt 5 - \sqrt 2 } \right)}}{{\left( {\sqrt 5 + \sqrt 2 } \right).\left( {\sqrt 5 - \sqrt 2 } \right)}}\\
= \dfrac{{5\sqrt 5 - 5\sqrt 2 + 2.{{\sqrt 5 }^2} - 2\sqrt 5 .\sqrt 2 }}{{{{\sqrt 5 }^2} - {{\sqrt 2 }^2}}}\\
= \dfrac{{5\sqrt 5 - 5\sqrt 2 + 2.5 - 2\sqrt {10} }}{{5 - 2}}\\
= \dfrac{{5\sqrt 5 - 5\sqrt 2 - 2\sqrt {10} + 10}}{3}\\
b,\\
\dfrac{{2\sqrt 6 - \sqrt {10} }}{{4\sqrt 3 - 2\sqrt 5 }} = \dfrac{{2\sqrt 2 .\sqrt 3 - \sqrt 2 .\sqrt 5 }}{{2.2\sqrt 3 - 2\sqrt 5 }}\\
= \dfrac{{\sqrt 2 .\left( {2\sqrt 3 - \sqrt 5 } \right)}}{{2.\left( {2\sqrt 3 - \sqrt 5 } \right)}} = \dfrac{{\sqrt 2 }}{2}\\
c,\\
\dfrac{1}{{2\sqrt 2 - 3\sqrt 3 }} = \dfrac{{2\sqrt 2 + 3\sqrt 3 }}{{\left( {2\sqrt 2 - 3\sqrt 3 } \right)\left( {2\sqrt 2 + 3\sqrt 3 } \right)}}\\
= \dfrac{{2\sqrt 2 + 3\sqrt 3 }}{{{{\left( {2\sqrt 2 } \right)}^2} - {{\left( {3\sqrt 3 } \right)}^2}}} = \dfrac{{2\sqrt 2 + 3\sqrt 3 }}{{8 - 27}}\\
= \dfrac{{2\sqrt 2 + 3\sqrt 3 }}{{ - 19}} = - \dfrac{{2\sqrt 2 + 3\sqrt 3 }}{{19}}\\
d,\\
\sqrt {\dfrac{{3 - \sqrt 5 }}{{3 + \sqrt 5 }}} = \sqrt {\dfrac{{{{\left( {3 - \sqrt 5 } \right)}^2}}}{{\left( {3 + \sqrt 5 } \right)\left( {3 - \sqrt 5 } \right)}}} = \sqrt {\dfrac{{{{\left( {3 - \sqrt 5 } \right)}^2}}}{{{3^2} - {{\sqrt 5 }^2}}}} \\
= \sqrt {\dfrac{{{{\left( {3 - \sqrt 5 } \right)}^2}}}{{9 - 5}}} = \sqrt {{{\dfrac{{\left( {3 - \sqrt 5 } \right)}}{4}}^2}} = \dfrac{{\left| {3 - \sqrt 5 } \right|}}{2} = \dfrac{{3 - \sqrt 5 }}{2}\\
18,\\
a,\\
\dfrac{{3 + 2\sqrt 3 }}{{\sqrt 3 }} + \dfrac{{2 + \sqrt 2 }}{{\sqrt 2 + 1}} - \left( {2 + \sqrt 3 } \right)\\
= \dfrac{{\sqrt 3 .\left( {\sqrt 3 + 2} \right)}}{{\sqrt 3 }} + \dfrac{{\sqrt 2 .\left( {\sqrt 2 + 1} \right)}}{{\sqrt 2 + 1}} - \left( {2 + \sqrt 3 } \right)\\
= \left( {\sqrt 3 + 2} \right) + \sqrt 2 - 2 - \sqrt 3 \\
= \sqrt 2 \\
b,\\
\left( {1 - \dfrac{{5 + \sqrt 5 }}{{1 + \sqrt 5 }}} \right)\left( {\dfrac{{5 - \sqrt 5 }}{{1 - \sqrt 5 }} - 1} \right)\\
= \left( {1 - \dfrac{{\sqrt 5 .\left( {\sqrt 5 + 1} \right)}}{{1 + \sqrt 5 }}} \right).\left( {\dfrac{{\sqrt 5 .\left( {\sqrt 5 - 1} \right)}}{{1 - \sqrt 5 }} - 1} \right)\\
= \left( {1 - \sqrt 5 } \right).\left( { - \sqrt 5 - 1} \right)\\
= - \left( {\sqrt 5 - 1} \right). - \left( {\sqrt 5 + 1} \right)\\
= \left( {\sqrt 5 - 1} \right)\left( {\sqrt 5 + 1} \right)\\
= {\sqrt 5 ^2} - {1^2} = 4\\
c,\\
\left( {\dfrac{{5 - 2\sqrt 5 }}{{2 - \sqrt 5 }} - 2} \right)\left( {\dfrac{{5 + 3\sqrt 5 }}{{3 + \sqrt 5 }} - 2} \right)\\
= \left( {\dfrac{{\sqrt 5 .\left( {\sqrt 5 - 2} \right)}}{{2 - \sqrt 5 }} - 2} \right)\left( {\dfrac{{\sqrt 5 .\left( {\sqrt 5 + 3} \right)}}{{3 + \sqrt 5 }} - 2} \right)\\
= \left( { - \sqrt 5 - 2} \right)\left( {\sqrt 5 - 2} \right)\\
= - \left( {\sqrt 5 + 2} \right).\left( {\sqrt 5 - 2} \right)\\
= - \left( {{{\sqrt 5 }^2} - {2^2}} \right)\\
= - \left( {5 - 4} \right)\\
= - 1\\
d,\\
\dfrac{3}{{\sqrt 5 - \sqrt 2 }} - \dfrac{2}{{2 - \sqrt 2 }} + \dfrac{1}{{\sqrt 3 + \sqrt 2 }}\\
= \dfrac{{3\left( {\sqrt 5 + \sqrt 2 } \right)}}{{\left( {\sqrt 5 - \sqrt 2 } \right)\left( {\sqrt 5 + \sqrt 2 } \right)}} - \dfrac{{2.\left( {2 + \sqrt 2 } \right)}}{{\left( {2 - \sqrt 2 } \right)\left( {2 + \sqrt 2 } \right)}} + \dfrac{{\sqrt 3 - \sqrt 2 }}{{\left( {\sqrt 3 + \sqrt 2 } \right)\left( {\sqrt 3 - \sqrt 2 } \right)}}\\
= \dfrac{{3\left( {\sqrt 5 + \sqrt 2 } \right)}}{{5 - 2}} - \dfrac{{2.\left( {2 + \sqrt 2 } \right)}}{{4 - 2}} + \dfrac{{\sqrt 3 - \sqrt 2 }}{{3 - 2}}\\
= \dfrac{{3\left( {\sqrt 5 + \sqrt 2 } \right)}}{3} - \dfrac{{2.\left( {2 + \sqrt 2 } \right)}}{2} + \dfrac{{\sqrt 3 - \sqrt 2 }}{1}\\
= \left( {\sqrt 5 + \sqrt 2 } \right) - \left( {2 + \sqrt 2 } \right) + \left( {\sqrt 3 - \sqrt 2 } \right)\\
= \sqrt 5 + \sqrt 2 - 2 - \sqrt 2 + \sqrt 3 - \sqrt 2 \\
= \sqrt 5 + \sqrt 3 - 3 - \sqrt 2
\end{array}\)