Đáp án:
$1)\\ a)-2\\ b)-3$
Giải thích các bước giải:
$1)\\ a)\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\\ =\dfrac{\sqrt{10}.\sqrt{2}(\sqrt{5}+\sqrt{2})}{\sqrt{5}+\sqrt{2}}+\dfrac{8(1+\sqrt{5})}{(1-\sqrt{5})(1+\sqrt{5})}\\ =\sqrt{10}.\sqrt{2}+\dfrac{8(1+\sqrt{5})}{1-5}\\ =\sqrt{20}-2(1+\sqrt{5})\\ =\sqrt{20}-2-2\sqrt{5}\\ =\sqrt{20}-2-\sqrt{20}\\ =-2\\ b)\sqrt{(\sqrt{5}-2)^2}-\sqrt{6+2\sqrt{5}}\\ =|\sqrt{5}-2|-\sqrt{5+2\sqrt{5}+1}\\ =\sqrt{5}-2-\sqrt{(\sqrt{5}+1)^2}\\ =\sqrt{5}-2-(\sqrt{5}+1)\\ =-3$