`P=(x+7)/(3\sqrt{x})`
Thế `x=1/9` vào `P`, ta có:
`(1/9+7):(3\sqrt{1/9})`
`=(64)/9:(3.1/3)`
`=(64)/9:1`
`=64/9`
Vậy khi `x=1/9` thì `P=64/9`
$Q=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{x-9}$
$=\dfrac{2\sqrt{x}(\sqrt{x}-3)+(\sqrt{x}+1)(\sqrt{x}+3)+11\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}$
$=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}$
$=\dfrac{3x+9\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}$
$=\dfrac{3\sqrt{x}(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)}$
$=\dfrac{3\sqrt{x}}{\sqrt{x}-3}$
$c)x>9$
$M=P.Q$
$<=>M=\dfrac{3\sqrt{x}}{\sqrt{x}-3}.\dfrac{x+7}{3\sqrt{x}}$
$=\dfrac{x+7}{\sqrt{x}-3}$
$=\dfrac{x-9+16}{\sqrt{x}-3}$
$=\dfrac{(\sqrt{x}-3)(\sqrt{x}+3)+16}{\sqrt{x}-3}$
$=\sqrt{x}+3+\dfrac{16}{\sqrt{x}-3}$
$=\sqrt{x}-3+\dfrac{16}{\sqrt{x}-3}+6$
Áp dụng BĐT cô-si
`->(\sqrt{x}-3)+\frac{16}{\sqrt{x}-3}>=2\sqrt{(\sqrt{x}-3).\frac{16}{\sqrt{x}-3}}=2\sqrt{16}=2.4=8`
$=>\sqrt{x}-3+\frac{16}{\sqrt{x}-3}+6>=8+6=14$
Dấu "=" xảy ra khi `x=49`
`<=>GTNNNN_M=14` khi và chỉ khi `x=49`