Cho hình chóp tam giác \(S.ABC\) có đáy là tam giác đều cạnh \(2a\), có \(SA\) vuông góc với \(\left( {ABC} \right)\). Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\), (tham khảo hình vẽ bên dưới). Để thể tích của khối chóp \(S.ABC\) bằng \(\dfrac{{{a^3}\sqrt 3 }}{2}\) thì giá trị \(\tan \alpha \) bằng
A.\(\tan \alpha = \dfrac{{\sqrt 2 }}{3}\)
B.\(\tan \alpha = 2\)
C.\(\tan \alpha = \dfrac{{\sqrt 3 }}{2}\)
D.\(\tan \alpha = \sqrt 3 \)