\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {3x + 2 - \dfrac{{{x^2} - x + 1}}{{x + 2}}} \right)\)
A.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{x\left( {2 + \dfrac{9}{x} + \dfrac{3}{{{x^2}}}} \right)}}{{1 + \dfrac{2}{x}}} = \dfrac{3}{2} \).
B.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{x\left( {2 + \dfrac{9}{x} + \dfrac{3}{{{x^2}}}} \right)}}{{1 + \dfrac{2}{x}}} = \pm \infty \).
C.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{x\left( {2 + \dfrac{9}{x} + \dfrac{3}{{{x^2}}}} \right)}}{{1 + \dfrac{2}{x}}} = + \infty \). \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{x\left( {2 + \dfrac{9}{x} + \dfrac{3}{{{x^2}}}} \right)}}{{1 + \dfrac{2}{x}}} = - \dfrac{3}{2} \).
D.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{x\left( {2 + \dfrac{9}{x} + \dfrac{3}{{{x^2}}}} \right)}}{{1 + \dfrac{2}{x}}} = + \dfrac{3}{2} \). \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{x\left( {2 + \dfrac{9}{x} + \dfrac{3}{{{x^2}}}} \right)}}{{1 + \dfrac{2}{x}}} = - \dfrac{3}{2} \).

Các câu hỏi liên quan