Chứng minh rằng căn(3 (a^2 + 6))
Cho a;b là hai số dương thỏa mãn : \(a^2+b^2=6\) CM rằng \(\sqrt{3\left(a^2+6\right)}\) \(\geq\) \(\left(a+b\right)\sqrt{2}\)
Ta có: \(\sqrt{3\left(a^2+6\right)}\ge\left(a+b\right)\sqrt{2}\)
<=> \(3\left(a^2+6\right)\ge2\left(a+b\right)^2\)
<=> \(3\left(a^2+b^2+a^2\right)\ge2a^2+2b^2+4ab\)
<=> \(6a^2+3b^2\ge2a^2+2b^2+4ab\)
<=> \(4a^2-4ab+b^2\ge0\)
<=> \(\left(2a-b\right)^2\ge0\) ( Luôn đúng) => đpcm
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}2a=b\\a^2+b^2=6\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}a=\sqrt{\dfrac{6}{5}}=\dfrac{\sqrt{30}}{5}\\b=\dfrac{2\sqrt{30}}{5}\end{matrix}\right.\)
Tìm GTNN của A= 9x/2−x+2/x
Cho x<0<2, tìm GTNN của A= \(\dfrac{9x}{2-x}+\dfrac{2}{x}\)
Giải hệ phương trình x+y+1/x+1/y=9/2, xy+1/xy=5/2
Giải hpt: \(\begin{cases} x+y+\dfrac{1}{x}+\dfrac{1}{y}= \dfrac{9}{2}\\ xy+\dfrac{1}{xy}=\dfrac{5}{2} \end{cases} \)
Giải phương trình căn(x^3+1/x+3)+căn(x+1)=căn(x^2−x+1)+căn(x+3)
giải phương trinh sau:
\(\sqrt{\dfrac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
Tính 1/2+căn5+3+căn3/căn3−căn(6−2căn5)
\(\dfrac{1}{2+\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}}-\sqrt{6-2\sqrt{5}}\)
Rút gọn các biểu thức sin^4α+cos^4α+2sin^2α.cos^2α
Rút gọn các biểu thức:
a)\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)\
b) \(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
Tìm GTNN m của biểu thức x^2_1 + x^2_2
Cho pt (ẩn x): \(x^2-\left(2m+3\right)x+m=0.\) Gọi x1 x2 là 2 nghiệm của phương trình đã cho. Tìm GTNN m của bt \(x_1^2+x_2^2\)
Hỏi số A là số nguyên tố hay hợp số, cho số A=n4+4n với n ∈ Z +
Cho số A=n4+4n với \(n\in Z^+\).Hỏi số A là số nguyên tố hay hợp số?
Chứng minh tam gác APH đồng dạng với tam giác ABQ
Cho đường tròn tâm O bán kính R không đổi, AB và CD là 2 đường kính bất kỳ của (O). Đường thẳng vuông góc với AB tại A cắt các đường thẳng BC, BD lần lượt tại M và N. Gọi P và Q lần lượt là trung điểm của AM và AN, H là trực tâm của tam giác BPQ.
a) Chứng minh tam gác APH đồng dạng với tam giác ABQ.
b) Chứng minh AH=\(\dfrac{R}{2}\)
c) hai đường kính AB, CD phải thỏa mãn điều kiện gì để diện tích tam giác BPQ nhỏ nhất?
Rút gọn (căna−2/căna+2−căna+2/căna−2)(căna−4/căna)
Rút gọn
a) với x>0 , x\(e\)1
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}+2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\)
b) với a>0,a\(e\)4
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\)
c)\(\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\) với a>0 ,a\(e\)1
d)\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\) với x>1
Giải phương trình x^2+2(m+1)x+2m-1=0 khi m=3/2
cho phuong trinh :x^2+2(m+1)x+2m-1=0
a,giai phuong trinh m=3/2
b.chung minh pt luon co 2 nghiem phan biet voi moi gia tri
c,tim m de phuong trinh co 2 nghiem trai dau
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến