A=x2+22x+1
*Min A:
Ta có: A=x2+22x+1
=2(x2+2)4x+2=2(x2+2)(x2+4x+4)−(x2+2)
=2(x2+1)(x+2)2+21≥21,∀x∈R
Vậy MinA=21khi(x+2)2=0
⇔x+2=0⇔x=−2
*Max A:
Ta có: A=x2+22x+1
=x2+2x2+2−x2+2x−1
=x2+2(x2+2)−(x2−2x+1)
=x2+2x2+2−x2+2(x−1)2
=1−x2+2(x−1)2≤0,∀x∈R
Vậy MaxA=1khi(x−1)2=0
⇔x−1=0⇔x=1