Cho hệ phương trình \(\left\{ \begin{array}{l}{x^2} + 2{y^2} = 3\\x + {y^2} + xy = 1\end{array} \right.\). Cặp số \((x;y)\) nào dưới đây là nghiệm của hệ phương trình? A.\((1;1)\). B.\(( - 1;1)\). C.\((1; - 1)\). D.\(( - 1;0)\).
Đáp án đúng: C Giải chi tiết:+) Đáp án A: Thay cặp số \(\left( {1;\;1} \right)\) vào hệ phương trình ta được: \(\left\{ \begin{array}{l}{1^2} + {2.1^2} = 3\\1 + {1^2} + 1.1 = 3 \ne 1\end{array} \right. \Rightarrow \left( {1;\;1} \right)\) không là nghiệm của hệ phương trình \( \Rightarrow \) loại đáp án A. +) Đáp án B: Thay cặp số \(\left( { - 1;\;1} \right)\) vào hệ phương trình ta được: \(\left\{ \begin{array}{l}{\left( 1 \right)^2} + {2.1^2} = 3\\ - 1 + {1^2} - 1.1 = - 1 \ne 1\end{array} \right. \Rightarrow \left( { - 1;\;1} \right)\) không là nghiệm của hệ phương trình \( \Rightarrow \) loại đáp án B. +) Đáp án C: Thay cặp số \(\left( {1; - 1} \right)\) vào hệ phương trình ta được: \(\left\{ \begin{array}{l}{1^2} + 2.{\left( { - 1} \right)^2} = 3\\1 + {\left( { - 1} \right)^2} - 1.1 = 1\end{array} \right. \Rightarrow \left( {1; - 1} \right)\) là nghiệm của hệ phương trình \( \Rightarrow \) chọn đáp án C. Chọn C.