Biết rằng đồ thị hàm số \(y = \dfrac{{\left( {m - 2n - 3} \right)x + 5}}{{x - m - n}}\) nhận hai trục tọa độ làm hai đường tiệm cận. Tính tổng \(S = {m^2} + {n^2} - 2.\) A.\(S = 2\) B.\(S = 0\) C.\(S = - 1\) D.\(S = 1\)
Đáp án đúng: B Giải chi tiết:Đồ thị hàm số \(y = \dfrac{{\left( {m - 2n - 3} \right)x + 5}}{{x - m - n}}\) nhận đường thẳng \(y = m - 2n - 3\) làm tiệm cận ngang và đường thẳng \(x = m + n\) làm tiệm cận đứng. Từ gt ta có \(\left\{ \begin{array}{l}m - 2n - 3 = 0\\m + n = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 1\\n = - 1\end{array} \right.\) \( \Rightarrow S = {m^2} + {n^2} - 2 = 0\) Chọn: B