Gọi \(m,n\) là hai giá trị thực thỏa mãn: giao tuyến của hai mặt phẳng \(\left( {{P_m}} \right):mx + 2y + nz + 1 = 0\) và \(\left( {{Q_m}} \right):x - my + nz + 2 = 0\) vuông góc với mặt phẳng \(\left( \alpha \right):4x - y - 6z + 3 = 0\). Tính \(m + n\).
A.\(m + n = 3\)
B.\(m + n = 2\)
C.\(m + n = 1\)
D.\(m + n = 0\)

Các câu hỏi liên quan