Cho \(\left( {{\Delta _1}} \right):\,\dfrac{x}{2} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{{z + 2}}{1},\,\,\left( {{\Delta _2}} \right):\,\,\left\{ \begin{array}{l}x = - 1 + 2t\\y = 1 + t\\z = 3\end{array} \right.\); \(\left( P \right):\,\,7x + y - 4z = 0\). Lập phương trình \(\left( d \right) \bot \left( P \right)\) và \(\left( d \right)\) cắt cả \(\left( {{\Delta _1}} \right),\,\,\left( {{\Delta _2}} \right)\).
A.\(\dfrac{{x - 2}}{1} = \dfrac{y}{3} = \dfrac{{z - 5}}{2}\)
B.\(\dfrac{{x - 6}}{7} = \dfrac{{y - 1}}{1} = \dfrac{{z - 2}}{3}\)
C.\(\dfrac{{x - 2}}{7} = \dfrac{y}{1} = \dfrac{{z + 1}}{{ - 4}}\)
D.\(\dfrac{{x - 2}}{5} = \dfrac{y}{2} = \dfrac{{z - 2}}{1}\)