Cho \(\left( \Delta \right):\,\,\dfrac{{x - 1}}{{ - 1}} = \dfrac{{y + 3}}{2} = \dfrac{{z - 3}}{1},\,\,\left( P \right):\,\,2x + y - 2z + 9 = 0\). Tìm \(M \in \left( \Delta \right)\) để \(d\left( {M;\left( P \right)} \right) = 2\).
A.\(\left[ \begin{array}{l}M\left( {3;5;7} \right)\\M\left( {3;7;1} \right)\end{array} \right.\)
B.\(\left[ \begin{array}{l}M\left( { - 3;5;7} \right)\\M\left( {3; - 7;1} \right)\end{array} \right.\)
C.\(\left[ \begin{array}{l}M\left( { - 3; - 5; - 7} \right)\\M\left( { - 3; - 7; - 1} \right)\end{array} \right.\)
D.\(M\left( {3;5;7} \right)\)