Đáp án đúng: A
Giải chi tiết:ĐKCĐ: \(199 - {x^2} - 2x \ge 0 \Leftrightarrow - 15 \le x \le 13\,\,\,\left( {x \in \mathbb{Z}} \right)\)
Ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,4{y^2} = 2 + \sqrt {199 - {x^2} - 2x} \\ \Leftrightarrow 4{y^2} = 2 + \sqrt {200 - {{\left( {x + 1} \right)}^2}} \\ \Rightarrow 2 \le 4{y^2} \le 2 + \sqrt {200} \\ \Rightarrow \left[ \begin{array}{l}1 \le y \le 2\\ - 2 \le y \le - 1\end{array} \right.\,\,\,\left( {Do\,\,y \in \mathbb{Z}} \right)\\ \Rightarrow y \in \left\{ { - 2; - 1;1;2} \right\}\end{array}\)
\(\begin{array}{l}TH1:\,\,\,y = \pm 2 \Rightarrow 16 = 2 + \sqrt {199 - {x^2} - 2x} \\ \Leftrightarrow \sqrt {199 - {x^2} - 2x} = 14\\ \Leftrightarrow 199 - {x^2} - 2x = 196\\ \Leftrightarrow {x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\,\,\,\,\,\,\,\left( {tm} \right)\\x = - 3\,\,\,\left( {tm} \right)\end{array} \right.\\TH2:\,\,\,y = \pm 1 \Rightarrow 4 = 2 + \sqrt {199 - {x^2} - 2x} \\ \Leftrightarrow \sqrt {199 - {x^2} - 2x} = 2\\ \Leftrightarrow 199 - {x^2} - 2x = 4\\ \Leftrightarrow {x^2} + 2x - 195 = 0\\ \Rightarrow \left[ \begin{array}{l}x = 13\,\,\,\,\,\,\left( {tm} \right)\\x = - 15\,\,\left( {tm} \right)\end{array} \right.\end{array}\)
Vậy nghiệm nguyên của hệ phương trình đã cho là \(\left( {x;y} \right) \in \left\{ \begin{array}{l}\left( {1;2} \right);\left( {1; - 2} \right);\left( { - 3;2} \right);\left( { - 3; - 2} \right)\\\left( {13;1} \right);\left( {13; - 1} \right);\left( { - 15;1} \right);\left( { - 15; - 1} \right)\end{array} \right\}\).
Chọn A.