Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\\4\sqrt{2-x}+2\sqrt{2y+8}=\sqrt{9x^2+16}\end{matrix}\right.\)
ĐK:\(x\in\left[0;2\right];y\ge-4\)
\(pt\left(1\right)\Leftrightarrow\left(x-y-2\right)\left(x^2+xy+y^2-x+y+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-y-2=0\\x^2+xy+y^2-x+y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x-2\\\left(2x+y-1\right)^2-3\left(x-1\right)\left(x+y\right)\ge0\end{matrix}\right.\)
Thay \(y=x-2\) vào \(pt\left(2\right)\):
\(4\sqrt{2-x}+2\sqrt{2\left(x-2\right)+8}=\sqrt{9x^2+16}\)
\(\Rightarrow x=\dfrac{4\sqrt{2}}{3}\Rightarrow y=\dfrac{4\sqrt{2}}{3}-2\)
1. Tính bằng cách thuận tiện nhất :
a,1.25 x 26,34 + 6,09 x1,25
b,15,2x 0,75 + 15,2 x 0,5 + 4,8 x 0,85
c,7,2 x 5,15 + 2,8 x 4,2 + 7,2 x 3,35 + 4,3 + 2, 8
giúp mik nhé .
0,75 nhân 100 = ?
giúp mik nhé.
Chứng minh rằng nếu a, b, c là độ dài ba cạnh của 1 tam giác thì :
\(a^2+b^2+c^2-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2\ge4\sqrt{3}S\)
trong đó S là diện tích của tam giác.
Cho S = \(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) với p là nửa chu vi (Công thức Hê rông)
tìm m để phương trình x4 + mx2 - m - 1 = 0 có 4 nghiệm phân biệt giúp với ạ !! ><
CMR trong mọi tam giác , ta có
\(a^2+b^2+c^2\ge\dfrac{36}{35}\left(p^2+\dfrac{abc}{p}\right)\) với p là nửa chu vi
tìm g/trị nhỏ nhất của hàm số:
y=\(\dfrac{2x^2-x+2}{2x-1}\)vs ∀ x∈(\(\dfrac{1}{2}\);+∞)
a,b,c>0;a+b+c=2.cmr: \(\sqrt{a+2009}+\sqrt{b+2009}+\sqrt{c+2009}\le3016\) . help me plz
Các bạn giúp mình nhanh nhé! Mình sẽ tick cho ai đưa ra đáp án nhanh nhất
Bài 1 :
Cho D= 1/2 . 3/4. 5/6-.99/100
Chứng minh: 1/15< D < 1/10
Bài 2 :
Tính E = ( 1/2 +1 ) (1/3 +1) ( 1/4 + 1)...(1/99+1)
Cho a,b,c>0 và a+b+c=2
CMR: \(\sqrt{a^2+\dfrac{1}{a^2}}\)+\(\sqrt{b^2+\dfrac{1}{b^2}}\)+\(\sqrt{c^2+\dfrac{1}{c^2}}\) \(\le\)\(\sqrt{\dfrac{97}{4}}\)
Phát biểu nào là sai ?
A. Nếu \(\overrightarrow{AB}\) = \(\overrightarrow{AC}\) thì \(\left|\overrightarrow{AB}\right|\) = \(\left|\overrightarrow{AC}\right|\)
B. \(\overrightarrow{AB}\) = \(\overrightarrow{CD}\) thì A,B,C,D thẳng hàng
C. Nếu 3. \(\overrightarrow{AB}\) + 7 . \(\overrightarrow{AC}\) = \(\overrightarrow{0}\) thì A,B,C thẳng hàng
D. \(\overrightarrow{AB}\) - \(\overrightarrow{CD}\) = \(\overrightarrow{DC}\) - \(\overrightarrow{BA}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến