tìm giới hanjn
1) lim \(\frac{\left(-1\right)^n}{n-3}\)
2) lim \(\frac{n\left(sin\left(pi.n^2\right)\right)}{n^2+3n-2}\)
1) lim\(\frac{\left(-1\right)^n}{n-3}\)
ta có: \(\left|\frac{\left(-1\right)^n}{n-3}\right|=\frac{1}{n-3}< \frac{1}{n-4}\)
lim \(\frac{1}{n-4}=lim\frac{\frac{1}{n}}{1-\frac{4}{n}}=\frac{lim0}{1}=0\)
2) lim\(\frac{nsin\left(pi.n^2\right)}{n^2+3n-2}\)
ta có : \(\left|\frac{nsin\left(pi.n^2\right)}{n^2+3n-2}\right|\)<=\(\frac{n}{n^2+3n-2}\)
=> lim\(\frac{n}{n^2+3n-2}=0\)
=>lim\(\frac{nsin\left(pi.n^2\right)}{n^2+3n-2}\)=0
CÓ 3 bó hoa. Bó thứ nhất 8 bông hoa hồng, bó thứ hai có 7 bông hoa ly, bó thứ 3 có 6 bông hoa huệ. Chọn ngẫu nhiên 7 bông hoa từ 3 bó hoa trên để cắm vào 1 lọ. Tính xác suất để trong 7 bông được chọn có số bông hoa hồng bằng số bông hoa ly.
Giải phương trình :
\(2\cos3x.\cos x+\sqrt{3}\left(1+\sin2x\right)=2\sqrt{3}\cos^2\left(2x+\frac{\pi}{4}\right)\)
tìm giới hạn :
\(\frac{\left(-1\right)^{n+3}.cos\left(pi.n^2+\frac{1}{n}+sinn\right)}{n\left(n-1\right)}\)
gieo đồng thời 2 con xúc sắc tính xác suất để tổng số chấm trên 2 con xúc xắc bằng 8
Các điểm D, E tương ứng lấy trên các cạnh AC,AB của tam giác ABC mà DE không song song với CB. Lấy \(F\in BC,F\in ED\) sao cho
\(\frac{BF}{FC}=\frac{EG}{GD}=\frac{BE}{CD}\)
Chứng minh GF// \(l_a\)la phân giác của góc A
sin 2x + 2cos\(^2\)2x +3sinx + cosx -3=0
\(1+\sqrt{2}Sin\left(X+\frac{Π}{4}\right)+sin2x+cos2x=0\)
Cho hai đường tròn không đồng tâm (O;R) và (O’;R’) và một điểm A trên (O;R) . Xác định điểm M trên (O;R) và diểm N trên (O’;R’) sao cho \(\overrightarrow{MN}=\overrightarrow{OA}\).
Cho hình hộp ABCD.A'B'C'D'. Xác định điểm M trên đường chéo AC và điểm N trên đường chéo C'D sao cho MN//BD'. Khi đó, hãy tính tỉnh số \(\frac{MN}{BD'}\)
Giai pt sau :
a)sin^2 x - 3sinx - 4 = 0
b)√3sinx + cos = 2sin 2x
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến