Dấu của hạng tử bậc là dấu âm nên chỉ tìm được giá trị lớn nhất thôi nhé.
\(\text{a) }A=2x-x^2\\ A=2x-x^2+1-1\\ A=1-\left(x^2-2x+1\right)\\ A=1-\left(x-1\right)^2\\ Do\text{ }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow A=1-\left(x-1\right)^2\le1\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\\ Vậy\text{ }Max_A=1\text{ }khi\text{ }x=1\)
\(\text{b) }B=19-6x-9x^2\\ B=20-1-6x-9x^2\\ B=20-\left(1+6x+9x^2\right)\\ B=20-\left(1+3x\right)^2\\ Do\text{ }\left(1+3x\right)^2\ge0\forall x\\ \Rightarrow B=20-\left(1+3x\right)^2\le20\forall x\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\\ \left(1+3x\right)^2=0\\ \Leftrightarrow1+3x=0\\ \Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\\ Vậy\text{ }Max_B=20\text{ }khi\text{ }x=-\dfrac{1}{3}\)