Tìm giới hạn :
\(L=\lim\limits_{x\rightarrow+\infty}\left(\sqrt[3]{\left(x+a_1\right)\left(x+a_1\right)\left(x+a_1\right)}-x\right)\)
Giới hạn trên có dạng \(\infty-\infty\), ta đưa nó về dạng \(\frac{0}{0}\) nhờ phép biến đổi sau :
Đặt \(x=\frac{1}{y}\), khi \(x\rightarrow+\infty\) thì \(y\rightarrow0\)
Ta có : \(L=\lim\limits_{y\rightarrow0}\frac{\sqrt[3]{\left(1+a_1y\right)\left(1+a_2y\right)\left(1+a_3y\right)}-1}{y}\)
Áp dụng phép đổi biến \(x=\frac{1}{y}\) ta có "
\(L=\lim\limits_{x\rightarrow+\infty}\left(\sqrt[n]{\left(x+a_1\right)\left(x+a_1\right)-..\left(x+a_1\right)}-x\right)=\frac{a_1+a_2+-+a_n}{n}\)
Tìm giới hạn : \(L=\lim\limits_{x\rightarrow0}\frac{\sqrt[4]{\cos x}-\sqrt[5]{\cos x}}{\sin^2x}\)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow10}\frac{lgx-1}{x-10}\)
\(\lim\limits_{x\rightarrow0}\frac{\ln\left(1+2x\right)}{\tan x}\)
\(\lim\limits_{x\rightarrow0}\frac{e^x-1}{\sqrt{x+1}-1}\)
\(\lim\limits_{x\rightarrow0}\frac{e^{5x+3}-e^3}{2x}\)
\(\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{2x}\)
\(\lim\limits_{x\rightarrow0}\frac{e^x-e^{-x}}{\sin x}\)
\(\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x\)
\(\lim\limits_{x\rightarrow+\infty}\left(\frac{x+1}{x-2}\right)^{2x-1}\)
\(\lim\limits_{x\rightarrow e}\frac{\ln x-1}{x-e}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến