P = x^2 +2y^2 - 2xy + 8x + 8y + 2017
Q = - x^2 - 2y^2 - 2xy + 8x + 6y + 13
E = -x^2 - 4y^2 + 2xy + 2x + 10xy - 3
tìm giá trị lớn nhất
P=\(X^2+2Y^2-2XY+8X+8Y+2017\)
P=\(\dfrac{4X^2+8Y^2-8XY+32Y+32X+8068}{4}\)
P=\(\dfrac{(\sqrt{3}X)^2-2.\sqrt{3}X.\dfrac{4}{\sqrt{3}}Y+\left(\dfrac{4}{\sqrt{3}}Y\right)^2-\left(\dfrac{4}{\sqrt{3}}Y\right)^2+8Y^2+X^2+32X+32Y+8068}{4}\)
P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+X^2+\dfrac{8}{3}Y^2+32X+32Y+8068}{4}\)
P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+X^2+2.X.16+16^2+(\dfrac{2\sqrt{2}}{\sqrt{3}}Y)^2+2.\dfrac{2\sqrt{2}}{\sqrt{3}}Y.4\sqrt{6}+\left(4\sqrt{6}\right)^2+7716}{4}\)
P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+\left(X+16\right)^2+\left(\dfrac{2\sqrt{2}}{\sqrt{3}}Y+4\sqrt{6}\right)^2}{4}+1929\ge1929\forall X\in R\)
DẤU = XẢY RA \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y=0\\X+16=0\\\dfrac{2\sqrt{2}}{\sqrt{3}}Y+4\sqrt{6}=0\end{matrix}\right.\)
\(27^{mx^3-2x^2+3x-2}=\frac{1}{9^{-mx^2-x+2}}\) tìm m để phương trình có 3 nghiệm phân biệt dương
A.m\(\in\)(0,4)/ \(\left\{\frac{3}{8}\right\}\) B.m\(\in\)(0,3)/ \(\left\{\frac{3}{4}\right\}\) C.m\(\in\)(0,1)/ \(\left\{\frac{3}{8}\right\}\) D.
m\(\in\)(0,1)/ \(\left\{\frac{3}{4}\right\}\)
\(\sqrt{X+4}+\sqrt{X-4}=2X-12+\sqrt{X^2-16}\)
Bài 17 - Đề toán tổng hợp (SBT trang 198)
Trong mặt phẳng tọa độ Oxy, cho hai đường tròn :
\(\left(C_1\right):\left(x-2\right)^2+\left(y-2\right)^2=4\)
\(\left(C_2\right):\left(x-5\right)^2+\left(y-3\right)^2=16\)
a) Chứng minh rằng hai đường tròn \(\left(C_1\right),\left(C_2\right)\) cắt nhau
b) Tìm tọa độ giao điểm của hai tiếp tuyến chung của \(\left(C_1\right)\) và \(\left(C_2\right)\)
Bài 11 (SBT trang 189)
Cho \(\tan\alpha-3\cot\alpha=6\) và \(\pi< \alpha< \dfrac{3\pi}{2}\). Tính :
a) \(\sin\alpha+\cos\alpha\)
b) \(\dfrac{2\sin\alpha-\tan\alpha}{\cos\alpha+\cot\alpha}\)
Cho x, y, z là các số thực dương thoả mãn xyz=1 . Chứng minh rằng:
\(\dfrac{x^5-x^2}{x^5+y^2+z^2}+\dfrac{y^5-y^2}{y^5+x^2+z^2}+\dfrac{z^5-z^2}{z^5+x^2+y^2}\ge0\)
\(\left(x+\frac{1}{2}\right)\).\(\left(\frac{2}{3}-2.x\right)\)=0
Bài 2.22 (SBT trang 92)
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại M. Gọi P là trung điểm của cạnh AD. Chứng minh rằng MP vuông góc với BC khi và chỉ khi \(\overrightarrow{MA}.\overrightarrow{MC}=\overrightarrow{MB}.\overrightarrow{MD}\) ?
Chứng minh: cos^4x-sin^4x=1-2sin^2x
Tìm m để hệ phương trình sau có nghiệm suy nhất :
\(\begin{cases}xy+x^2=m\left(y-1\right)\left(1\right)\\xy+y^2=m\left(x-1\right)\left(2\right)\end{cases}\)
cho \(\tan x=\dfrac{3}{5}\)tính ;
A\(=\dfrac{\sin x+\cos x}{\sin x-\cos x}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến