cho a,b,c >0 thoả mãn \(\sum a=1\)
CMR: \(\sum a^3+72abc\left(\sum ab\right)\le1\)
bài này dễ thôi bạn, quan trọng là nó hơi dài nên mình không có hứng làm chi tiết
BĐT đã cho viết lại thành
\(\left(a^3+b^3+c^3\right)\left(a+b+c\right)^2+72abc\left(ab+bc+ca\right)-\left(a+b+c\right)^5\le0\)
\(\Leftrightarrow-\dfrac{3}{2}\left(8a^3+7a^2b+7a^2c-7ab^2-7ac^2+9b^2c+9bc^2\right)\left(b-c\right)^2-\dfrac{3}{2}\left(8b^3+7b^2c-7bc^2+9ac^2+7ab^2+9a^2c-7a^2b\right)\left(c-a\right)^2-\dfrac{3}{2}\left(9a^2b+9ab^2+7ac^2-7a^2c-7b^2c+7bc^2+8c^3\right)\left(a-b\right)^2\le0\)
tìm max
x-xmux2
cho a={căn x E n sao| x nhỏ hơn 20}.liệt kê các phần tử a
Chứng minh rằng tổng các bình phương của 5 số tự nhiên liên tiếp ko thể là số chính phương
CMR
\(4sinx.sin\left(\dfrac{\pi}{3}+x\right).sin\left(\dfrac{\pi}{3}-x\right)=sin3x ;\forall x\in R\)
Tìm m để hệ BPT có nghiệm \(\left\{{}\begin{matrix}x^2+6x+7+m\le0\\x^2+4x+7-4m\le0\end{matrix}\right.\)
giải hệ PT
\(\left\{{}\begin{matrix}x^2=2x+a^2\left(y-1\right)\\y^2=2y+a^2x\left(x-2\right)\end{matrix}\right.\)
Tìm tất cả giá trị thực của m để hàm số xác định trên (0;1)
\(y=\dfrac{mx}{\sqrt{x-m+2}-1}\)
Chứng minh rằng : A= \(3+3^2+3^3+-+3^{28}+3^{29}+3^{30}\) chia hết cho 13.
Trên trục x'Ox cho ba điểm A,B,C thoả mãn \(\dfrac{\overrightarrow{AC}}{2}=\dfrac{\overrightarrow{CB}}{3}CMR:\overrightarrow{OC}=\dfrac{3\overrightarrow{OA}}{5}+\dfrac{2\overrightarrow{OB}}{5}\)
2x+2x+2=80
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến