Cho a,b,c > 0 thỏa mãn \(ab+bc+ca+2abc=1\). Tìm giá trị nhỏ nhất của
\(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-2\left(a+b+c\right)\)
Dự đoán GTNN của P là đạt 3 tại \(a=b=c=\dfrac{1}{2}\), vậy ta sẽ C/m BĐT
\(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-2\left(a+b+c\right)\ge3\)
Từ giả thuyết suy ra tồn tại các số \(x;y;z>0\) sao cho
\(a=\dfrac{x}{y+z},b=\dfrac{y}{z+x},c=\dfrac{z}{x+y}\)
BĐT cần chứng minh trở thành
\(\dfrac{y+z}{x}+\dfrac{z+x}{y}+\dfrac{x+y}{z}\ge2\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)+3\)
Để ý rằng:
\(\dfrac{y+z}{x}+\dfrac{z+x}{y}+\dfrac{x+y}{z}\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\)
Nên BĐT sẽ đúng nếu ta C/m được
\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)
Nhưng đây chính là BĐT Nesbitt quen thuộc, vì vậy BĐT ban đầu đúng
tim so tu nhien n so cho so sau la so chinh phuong:
n4 + 2n3 + 2n2 +n +7
Chứng minh bằng phương pháp phản chứng định lý : Với mọi số nguyên dương n, nếu n2+4n+2 chia hết cho 4 thì n chia hết cho 4 .
Cho các số dương a, b, c, d. Biết \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}+\dfrac{1}{1+d}\ge3\).
Chứng minh rằng : abcd\(\le\dfrac{1}{81}\)
1.Tam giác ABC có trung tuyến AI.CMR : AI > BI
2.Cho ab > hoặc =2( c +d).CMR có ít nhất 1 trong 2 ptrinh sau có nghiệm x^2 + ax+ c =0;x^2 + bx + d= 0
Cho x, y, z > 0 và xyz = 1
Tìm GTLN của \(P=\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\)
Tìm A\(\cap\)B; A\(\cup\)B; A\B; B\A biết: a) A=[2;6] và B =[3;5]. b) A= {x \(\in\)Q\(|\)1\(\le\)x\(\le\) 4} và B={3;4;5}
giải phương trình..\(\dfrac{x\left(3-x\right)}{x+1}.\left(x+\dfrac{3-x}{x+1}\right)=2\)
Tìm các số nguyên x,y thỏa mãn phương trình:
\(x^2+xy+y^2=x^2y^2\)
viết biểu thức sau dưới dạng lũy thừa
\(27^6.128^3:12^9\)
giải phương trình
a) x5= x4+x3+x2+x+2
b) x4-5x2-2x+3=0
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến