tìm tập xác định của các hàm số
y = \(\dfrac{\sqrt{2x-5}}{\left|x\right|-3}\)
y = \(\dfrac{\left|x\right|}{\sqrt{x-2}}+\dfrac{5x^2}{-x^2+6x-5}\)
y = \(\dfrac{2x}{\sqrt{x+1}}+\dfrac{3x}{x^2+1}\)
Lời giải:
\(y=\frac{\sqrt{2x-5}}{|x|-3}\)
ĐK: \(\left\{\begin{matrix} 2x-5\geq 0\\ |x|-3eq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{5}{2}\\ xeq \pm 3\end{matrix}\right.\)
\(\Rightarrow x\geq \frac{5}{2}; xeq 3\)
Vậy TXĐ là \(x\in [\frac{5}{2}; +\infty)\setminus \left\{3\right\}\)
====
\(y=\frac{|x|}{\sqrt{x-2}}+\frac{5x^2}{-x^2+6x-5}\)
ĐK: \(\left\{\begin{matrix} x-2>0\\ -x^2+6x-5eq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x>2\\ (5-x)(x-1)eq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>2\\ xeq 1; xeq 5\end{matrix}\right.\)
Vậy TXĐ: \(x\in (2;+\infty)\setminus \left\{1;5\right\}\)
===--
\(y=\frac{2x}{\sqrt{x+1}}+\frac{3x}{x^2+1}\)
ĐK: \(\left\{\begin{matrix} x+1>0\\ x^2+1eq 0\end{matrix}\right.\Leftrightarrow x>-1\)
Vậy TXĐ: \(x\in (-1;+\infty)\)
bài 1: xét tình đúng sai ( có giải thích) và lập mệnh đề phủ định của các mệnh đề sau
a. A: phương trình:x2+(1-\(\sqrt{3}\))x -2+\(\sqrt{3}\)=0 vô nghiệm
b.B:"\(\forall x\in R,x^2x\ge x-\dfrac{1}{4}\)"
c.C:" 2017 ko là số nguyên tố"
d. D:"\(\forall x,y\in R,x^2+y^2-\dfrac{3}{2}y+\dfrac{3}{4}\ge xy\)"
bài 2 cho tập hợp A={\(x\in R\)/\(\)(\(x^3-3x^2+2x\))(\(2x-2\))=0}
a. liệt kê các phần tử của tập hợp A.
b. tìm tất cả tập con của A.
Tìm tính chất của tam giác ABC, biết\(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CA}-\overrightarrow{CB}\right|\)
cho ngũ giác ABCDE . Chứng minh :
a) vecto AB + vecto CD = vecto AE - vecto BC - vecto DE
b) vecto AB = vecto AC - vecto DC - vecto BE - vecto ED
a) \(\dfrac{5x-2}{2-2x}\)+\(\dfrac{2x-1}{2}\)=1-\(\dfrac{x^2+x-3}{1-x}\)
b)\(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}\)=\(\dfrac{x\left(3x-1\right)+1}{\left(x-2\right).\left(x-2\right)}\)
c)1+\(\dfrac{x}{3-x}\)=\(\dfrac{3x}{\left(x+2\right).\left(x-3\right)}+\dfrac{2}{x+2}\)
giải hệ pt: \(\left\{{}\begin{matrix}3x+y=\dfrac{1}{x^2}\\3y+x=\dfrac{1}{y^2}\end{matrix}\right.\)
Chứng minh :
Vecto AB + vecto CD = vecto AD + vecto CB
giải hệ
\(\left\{{}\begin{matrix}x^3-8x=y^3+2y\\x^2-3y^2=6\end{matrix}\right.\)
cho f(x)=(x+2)(x+3)(x+4)(x+5)+1. Chứng minh rằng: f(x) luôn là số chính phương với mọi x ∈ Z
cho hình bình hành ABCD, tâm O. Chứng minh :
a) CO→ - OB→ = BA→
b) AB→- BC→ = DB→
c) DA→- DB→ + DC→ =0→
Trong mặt phẳng với hệ tọa độ OXY cho tam giác ABC vuông tại A và nội tiếp đường tròn (C) x2+y2- 6 x - 2y + 5 = 0 Gọi H là hình chiếu của A lên BC đường tròn đường kính AH cắt AB ,AC lần lượt tại M ,N Tìm tọa độ điểm A và viết phương trình cạnh BC biết đường thẳng MN ;20 x- 10y - 9 = 0 và điểm H có tung độ lớn hơn hoành độ
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến