Biện luận theo m số nghiệm của phương trình ( dựa vào đồ thị hàm số): \(\left|-x^2+3x+2\right|=2m-1\)
f(x)=-x^2+3x+2=2+9/4-(x^2-2.3/2x+9/4) =17/4 -(x-3/2)^2
f(x)<=17/4
f(x)=17/4 -(x-3/2)^2 luôn có 2 nghiệm x1 và x2 => |f(x)| >=0
f(x)<=17/4 => |f(x)| <=17 /4 khi x thuộc (x1;x2)
=>biên luận
nếu 2m-1 =0 => f(x) =2m-1 có 2 nghiệm x1, x2
nếu 2m-1 <0 => f(x) =2m-1 vô nghiệm
nếu 2m-1 =17/4 => f(x) =2m-1 có 3 nghiệm
nếu 2m-1 >17/4 => f(x) =2m-1 có 2 nghiệm
0 f(x) =2m-1 có 4 nghiệm
Bạn tự giải ra m
Cho các số thực dương \(a,b,c\) thỏa mãn \(a+b+c\le3\). Tìm giá trị nhỏ nhất của biểu thức:
\(M=\dfrac{a^2+6a+3}{a^2+a}+\dfrac{b^2+6b+3}{b^2+b}+\dfrac{c^2+6c+3}{c^2+c}\)
Viết các tập sau dưới dạng nêu tính chất đặc trưng phần tử
A={2;3;5;7;11;13}
B={15;24;33;42;51;60}
C={1;3;9;19;33}
Cho tam giác ABC có trọng tâm G và trung tuyến AM. Khẳng định nào sau đây sai:
A. \(\overrightarrow{GA}\) + 2. \(\overrightarrow{GM}\) = 0
B. \(\overrightarrow{OA}\) + \(\overrightarrow{OB}\) + \(\overrightarrow{OC}\) = 3. \(\overrightarrow{OG}\) , với mọi điểm O
C. \(\overrightarrow{GA}\) + \(\overrightarrow{GB}\) + \(\overrightarrow{GC}\) = 0
D. \(\overrightarrow{AM}\) = -2 . \(\overrightarrow{MG}\)
Hãy chứng min rằng : 1) \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2},\forall a,b,c,d\in R\)
2) \(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\ge2,\forall x,y\in R\)
Cho a, b, c, là ba số thực dương thỏa mãn: a + b + c = 2. Tìm giá trị nhỏ nhất của biểu thức:
P = \(\dfrac{7+2b}{1+a}+\dfrac{7+2c}{1+b}+\dfrac{7+2a}{1+c}\)
Cho 3 số thực dương x,y,z. Tìm MinP= \(\frac{x^3+y^3+z^3}{xy+2yz+zx}\)
Cho các số thực dương x,y,z. Tìm Min P=\(\frac{x^2+y^2+z^2}{xy+2yz+xz}\)
Cho a+b =1 . Tìm giá trị nhỏ nhất của biểu thức A = a^2+ b^2 . Giúp mình nhé !
Lập phương trình đường tròn biết tâm I thuộc đuờng thẳng d: 2x + 2y - 3=0 và đi qua A(3;0) và B(1;-2).
tìm tập xác định của các hàm số
y = \(\dfrac{\sqrt{2x-5}}{\left|x\right|-3}\)
y = \(\dfrac{\left|x\right|}{\sqrt{x-2}}+\dfrac{5x^2}{-x^2+6x-5}\)
y = \(\dfrac{2x}{\sqrt{x+1}}+\dfrac{3x}{x^2+1}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến