Cho a, b, c, là ba số thực dương thỏa mãn: a + b + c = 2. Tìm giá trị nhỏ nhất của biểu thức:
P = \(\dfrac{7+2b}{1+a}+\dfrac{7+2c}{1+b}+\dfrac{7+2a}{1+c}\)
\(a+b+c=2\Rightarrow ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{4}{3}\)
\(P=\dfrac{7+2b}{1+a}+\dfrac{7+2c}{1+b}+\dfrac{7+2a}{1+c}\)
\(\ge\dfrac{\left(21+2\left(a+b+c\right)\right)^2}{\left(1+a\right)\left(7+2b\right)+\left(1+b\right)\left(7+2c\right)+\left(1+c\right)\left(7+2a\right)}\)
\(=\dfrac{25^2}{21+9\left(a+b+c\right)+2\left(ab+bc+ca\right)}\ge\dfrac{25^2}{21+9.2+\dfrac{2.4}{3}}=15\)
\("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)
Cho 3 số thực dương x,y,z. Tìm MinP= \(\frac{x^3+y^3+z^3}{xy+2yz+zx}\)
Cho các số thực dương x,y,z. Tìm Min P=\(\frac{x^2+y^2+z^2}{xy+2yz+xz}\)
Cho a+b =1 . Tìm giá trị nhỏ nhất của biểu thức A = a^2+ b^2 . Giúp mình nhé !
Lập phương trình đường tròn biết tâm I thuộc đuờng thẳng d: 2x + 2y - 3=0 và đi qua A(3;0) và B(1;-2).
tìm tập xác định của các hàm số
y = \(\dfrac{\sqrt{2x-5}}{\left|x\right|-3}\)
y = \(\dfrac{\left|x\right|}{\sqrt{x-2}}+\dfrac{5x^2}{-x^2+6x-5}\)
y = \(\dfrac{2x}{\sqrt{x+1}}+\dfrac{3x}{x^2+1}\)
bài 1: xét tình đúng sai ( có giải thích) và lập mệnh đề phủ định của các mệnh đề sau
a. A: phương trình:x2+(1-\(\sqrt{3}\))x -2+\(\sqrt{3}\)=0 vô nghiệm
b.B:"\(\forall x\in R,x^2x\ge x-\dfrac{1}{4}\)"
c.C:" 2017 ko là số nguyên tố"
d. D:"\(\forall x,y\in R,x^2+y^2-\dfrac{3}{2}y+\dfrac{3}{4}\ge xy\)"
bài 2 cho tập hợp A={\(x\in R\)/\(\)(\(x^3-3x^2+2x\))(\(2x-2\))=0}
a. liệt kê các phần tử của tập hợp A.
b. tìm tất cả tập con của A.
Tìm tính chất của tam giác ABC, biết\(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CA}-\overrightarrow{CB}\right|\)
cho ngũ giác ABCDE . Chứng minh :
a) vecto AB + vecto CD = vecto AE - vecto BC - vecto DE
b) vecto AB = vecto AC - vecto DC - vecto BE - vecto ED
a) \(\dfrac{5x-2}{2-2x}\)+\(\dfrac{2x-1}{2}\)=1-\(\dfrac{x^2+x-3}{1-x}\)
b)\(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}\)=\(\dfrac{x\left(3x-1\right)+1}{\left(x-2\right).\left(x-2\right)}\)
c)1+\(\dfrac{x}{3-x}\)=\(\dfrac{3x}{\left(x+2\right).\left(x-3\right)}+\dfrac{2}{x+2}\)
giải hệ pt: \(\left\{{}\begin{matrix}3x+y=\dfrac{1}{x^2}\\3y+x=\dfrac{1}{y^2}\end{matrix}\right.\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến