Với giá trị nào của tham số m hệ phương trình có nghiệm thỏa mãn điều kiện \(x>0,y< 0\) >
\(\left\{{}\begin{matrix}2x-\left(m^2+m+1\right)y=-m^2-9\\m^4x+\left(2m^2+1\right)y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x-\left(m^2+m+1\right)y=-m^2-9\left(1\right)\\m^4x+\left(2m^2+1\right)y=1\left(2\right)\end{matrix}\right.\)
rút x từ (1) thế vào (2)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\left(3\right)\\m^4\left[\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\right]+\left(2m^2+1\right)y=1\left(4\right)\end{matrix}\right.\)
\(\left(4\right)\Leftrightarrow m^4\left(m^2+m+1\right)y-m^4\left(m^2+9\right)+2\left(2m^2+1\right)y=2\)
\(\Leftrightarrow\left[m^4\left(m^2+m+1\right)+4m^2+2\right]y=m^4\left(m^2+9\right)+2\)
\(\Leftrightarrow Ay=B\)
Taco
\(\left\{{}\begin{matrix}m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall m\in R\\4m^2+2>0\forall m\in R\\m^4\left(m^2+9\right)>0\forall m\in R\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A>0\forall m\in R\\B>0\forall m\in R\end{matrix}\right.\)
\(\Rightarrow y>0\forall m\in R\)
Kết luận không có m thủa mãn
Bài 53 (SBT trang 123)
Tìm các giá trị của tham số m để các phương trình sau có hai nghiệm dương phân biệt :
a) \(x^2-2x+m^2+m+3=0\)
b) \(\left(m^2+m+3\right)x^2+\left(4m^2+m+2\right)x+m=0\)
Bài 52 (SBT trang 123)
Tìm các giá trị của tham số m để các phương trình sau có 2 nghiệm phân biệt trái dấu :
a) \(\left(m^2-1\right)x^2+\left(m+3\right)x+\left(m^2+m\right)=0\)
b) \(x^2-\left(m^3+m-2\right)x+m^2+m-5=0\)
Bài 51 (SBT trang 123)
Tìm các giá trị của tham số m để các tam thức bậc hai sau có dấu không đổi (không phụ thuộc vào x) :
a) \(f\left(x\right)=2x^2-\left(m+2\right)x+m^2-m-1\)
b) \(f\left(x\right)=\left(m^2-m-1\right)x^2-\left(2m-1\right)x+1\)
Bài 50 (SBT trang 123)
Giải các bất phương trình, hệ bất phương trình (ẩn m) sau :
a) \(\left\{{}\begin{matrix}2m-1>0\\m^2-\left(m-2\right)\left(2m-1\right)< 0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}m^2-m-2< 0\\\left(2m-1\right)^2-4\left(m^2-m-2\right)\le0\end{matrix}\right.\)
Bài 49 (SBT trang 123)
a) \(\left\{{}\begin{matrix}\left(2m-1\right)^2-4\left(m^2-m\right)\ge0\\\dfrac{1}{m^2-m}>0\\\dfrac{2m-1}{m^2-m}>0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m-2\right)^2-\left(m+3\right)\left(m-1\right)\ge0\\\dfrac{m-2}{m+3}< 0\\\dfrac{m-1}{m+3}>0\end{matrix}\right.\)
Bài 48 (SBT trang 122)
a) \(\left(2m-1\right)^2-4\left(m+1\right)\left(m-2\right)\ge0\)
b) \(m^2-\left(2m-1\right)\left(m+1\right)< 0\)
Bài 47 (SBT trang 122)
a) \(2m^2-m-5>0\)
b) \(-m^2+m+9>0\)
Bài 46 (SBT trang 122)
Giải các bất phương trình sau :
a) \(\left\{{}\begin{matrix}x^2\ge4x\\\left(2x-1\right)^2< 9\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x-3< \left(x+1\right)\left(x-2\right)\\x^2-x\le6\end{matrix}\right.\)
Bài 45 (SBT trang 122)
a) \(\left\{{}\begin{matrix}x^2\ge0,25\\x^2-x\le0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x-1\right)\left(2x+3\right)>0\\\left(x-4\right)\left(x+\dfrac{1}{4}\right)\le0\end{matrix}\right.\)
Bài 44 (SBT trang 122)
a) \(\dfrac{x+1}{x-1}+2>\dfrac{x-1}{x}\)
b) \(\dfrac{1}{x+1}+\dfrac{2}{x+3}< \dfrac{3}{x+2}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến